
TVP4010
Programmer Reference Guide

March 1997

Printed on Recycled Paper

�	�����
�����
���� ������ ����

1997 Mixed Signal Logic Products

User’s Guide

Printed in U.S.A., March 1997 SLAU006

1997

B
ook

Type

year

�
	
�
�
�
�
�

U
ser’s G

uide

Tw
o Lines

B
ook Type

Tw
o Lines

B
ook Type

Volum
e #

B
ook Type

Volum
e #

�
�

����

�
��
�
��
�
�

�
�

����

�
�

����

�
��
�
��
�
�

�
���

�
�

����

�
���

�
���

�
�
�
��
��
�
�

�
���

�
�
�
��
��
�
�

�
���

�
�
�
��
��
�
�

TVP4010
Programmer Reference Guide

SLAU006
March 1997

Printed on Recycled Paper

�	�����
�����
���� ������ ����

User’s Guide

1997 Mixed Signal Logic Products

Printed in U.S.A., March 1997 SLAU006

iii Read This First

Preface

Read This First

About This Manual

TVP4010 is a high performance graphics processor that balances high quality
3D texturing and graphics performance with leading edge Windows, Video and
SVGA acceleration. Based on a proven low-cost and scaleable architecture,
TVP4010 accelerates a braod range of applications including games,
animation, authoring, web browsers, design visualization, publishing and
general multimedia applications.

TVP4010 sets the standard for 3D and multimedia acceleration, making it the
ideal solution to meet the increasingly pervasive need for balanced 3D and
multimedia acceleration-and all in a single, low cost PCI device.

This document has been written as the primary reference for programmers
and system designers who wish to develop software to drive the TVP4010.
Information on programming the I/O registers can be found in the TVP4010
Data Manual.

An understanding of the principles of 2D and 3D graphics programming will be
useful in reading this document.

How to Use This Manual

This document contains the following chapters:

Chapter 1 gives an overview of TVP4010.

Chapter 2 details the programming model for the chip.

Chapter 3 describes the memory I/O and organization of TVP4010 supports
in the framebuffer, localbuffer and texture buffer.

Chapter 4 describes how to use TVP4010 for graphics rendering.

Chapter 5 describes the initialization of TVP4010.

Chapter 6 provides tips for programming TVP4010.

Notational Conventions

iv

Chapter 7 tabulates the TVP4010 registers.

Chapter 8 gives lists of registers and their addresses.

Appendix A gives the format used in the pseudocode examples throughout the
document.

Appendix B gives a table used to set up common screen widths.

A glossary of technical terms follows the appendices.

An extensive index is included.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect “section name”, address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

 Information About Cautions and Warnings

v Read This First

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16–bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

Related Documentation From Texas Instruments

vi

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Related Documentation From Texas Instruments

The following books describe the TV4010 and related support tools. To obtain
a copy of any of these TI documents, call the Texas Instruments Literature
Response Center at (800) 477–8924. When ordering, please identify the book
by its title and literature number.

TV4010 Architecture Overview, Literature No. SLAU009

TV4010 Installation Manual, Literature No. SLAU008

TV4010 Data Manual, Literature No. SLAS155

 If You Need Assistance

vii Read This First

If You Need Assistance . . .

If you want to . . . Contact Texas Instruments at . . .

Visit TI online World Wide Web: http://www.ti.com

Receive general information
i

World Wide Web: http://www.ti.com/sc/docs/pic/home.htmg
or assistance North America, South America: (214) 644–5580

Europe, Middle East, Africa
Dutch:

English:
French:
Italian:

German:

33–1–3070–1166
33–1–3070–1165
33–1–3070–1164
33–1–3070–1167
33–1–3070–1168

Japan (Japanese or English)
Domestic toll-free:

International:
0120–81–0026
81–3–3457–0972 or
81–3–3457–0976

Korea (Korean or English): 82–2–551–2804

Taiwan (Chinese or English): 886–2–3771450

Ask questions about Mixed
Signal Processor (MSP)
product operation or report
suspected problems

Fax:
Fax Europe:

Email:
World Wide Web:

BBS North America:
BBS Europe:

320 BBS Online:

(713) 274–2320
(713) 274–2324
+33–1–3070–1032
4389750@mcimail.com
http://www.ti.com/dsps
(713) 274–2323 8–N–1
+44–2–3422–3248
ftp.ti.com:/mirrors/tms320bbs
(192.94.94.53)

Ask questions about micro-
controller product operation
or report suspected prob-
lems

Fax:
Email:

World Wide Web:
BBS:

(713) 274–2370
(713) 274–4203
*H370@msg.ti.com
http://www.ti.com/sc/micro
(713) 274–3700 8–N–1

Request tool updates Software:
Software fax:

Hardware:

(214) 638–0333
(214) 638–7742
(713) 274–2285

Order Texas Instruments
documentation (see Note 1)

Literature Response Center: (800) 477–8924

Make suggestions about or
i d

Email: comments@books.sc.ti.comgg
report errors in documenta-
tion (see Note 2)

Mail: Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

Notes: 1) The literature number for the book is required; see the lower-right corner on the back cover.

2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the
publication date from the spine or front cover.

Trademarks

viii

Trademarks

3Dlabs, GLINT and Permedia are registered trademarks of 3Dlabs Inc. Ltd.

OpenGL is a trademark of Silicon Graphics, Inc.

Windows, Win32, Windows 95 and Windows NT are trademarks of Microsoft
Corp.

Macintosh, QuickDraw, and QuickDraw3D are trademarks of Apple Computer,
Inc.

RAMDAC is a trademark of Brooktree Corp.

 Contents

ix

Contents

1 Overview 1-1.
1.1 Functional Overview 1-3.

1.1.1 Memory Subsystem 1-3.
1.1.2 Host Interface 1-3.
1.1.3 Task Switching 1-4.
1.1.4 SVGA 1-4.

2 Programming Model 2-1.
2.1 Memory Regions 2-2.
2.2 TVP4010 as a Register File 2-3.

2.2.1 Register Types 2-3.
2.2.2 Efficiency Issues and Register Types 2-4.

2.3 TVP4010 I/O Interface 2-6.
2.3.1 PCI Disconnect 2-6.
2.3.2 FIFO Control 2-6.
2.3.3 The DMA Interface 2-8.
2.3.4 Output FIFO and Graphics Processor FIFO Interface 2-15.
2.3.5 Graphics Processor FIFO Interface 2-16.

2.4 Interrupts 2-18.
2.5 Synchronization 2-19.
2.6 Host Memory Bypass 2-21.
2.7 Register Read Back 2-22.
2.8 Byte Swapping 2-23.
2.9 Red and Blue Swapping 2-24.

3 Memory I/O and Organization 3-1.
3.1 Patching 3-2.
3.2 Localbuffer 3-3.

3.2.1 Localbuffer Coordinates 3-3.
3.3 Framebuffer 3-5.

3.3.1 Framebuffer Coordinates 3-5.
3.3.2 Framebuffer Color Formats 3-7.
3.3.3 Special Memory Modes 3-10.

3.4 Double Buffering 3-12.
3.4.1 BitBlt Double Buffering 3-12.
3.4.2 Full Screen Double Buffering 3-12.

Contents

x

3.4.3 Bitplane Double Buffering 3-15.
3.4.4 Panning 3-16.

3.5 Texture Buffer 3-17.
3.5.1 Texture Buffer Coordinates 3-17.
3.5.2 Texture Color Formats 3-18.

4 Graphics Programming 4-1.
4.1 The Graphics HyperPipeline 4-2.
4.2 A Gouraud Shaded Triangle 4-4.

4.2.1 Initialization 4-4.
4.2.2 Dominant and Subordinate Sides of a Triangle 4-5.
4.2.3 Calculating Color values for Interpolation 4-5.
4.2.4 Register Set Up for Color Interpolation 4-6.
4.2.5 Calculating Depth Gradient Values 4-6.
4.2.6 Register Set Up for Depth Testing 4-7.
4.2.7 Calculating the Slopes for each Side 4-7.
4.2.8 Rasterizer Mode 4-8.
4.2.9 Subpixel Correction 4-8.
4.2.10 Rasterization 4-9.

4.3 Rasterizer Unit 4-11.
4.3.1 Trapezoids 4-11.
4.3.2 Lines 4-14.
4.3.3 Points 4-15.
4.3.4 Spans 4-16.
4.3.5 Block Write Operation 4-16.
4.3.6 Sub Pixel Precision and Correction 4-16.
4.3.7 Bitmaps 4-17.
4.3.8 Block Writes and Bitmaps 4-19.
4.3.9 Copy/Upload/Download 4-20.
4.3.10 Rasterizer Mode 4-21.
4.3.11 Synchronization 4-22.
4.3.12 X and Y limits clipping 4-23.
4.3.13 Registers 4-23.

4.4 Scissor/Stipple Unit 4-32.
4.4.1 User Scissor Test 4-32.
4.4.2 Screen Scissor Tests 4-32.
4.4.3 Area Stippling 4-33.
4.4.4 Registers 4-34.
4.4.5 Scissor Example 4-35.
4.4.6 Area Stipple Example 4-36.

4.5 Localbuffer Read and Write Units 4-37.
4.5.1 Localbuffer Read 4-37.
4.5.2 Localbuffer Write 4-38.
4.5.3 Localbuffer Data Formats 4-39.

 Contents

xi Contents

4.5.4 Registers 4-39.
4.5.5 Localbuffer Example 4-40.

4.6 Stencil/Depth Test Unit 4-42.
4.6.1 Stencil Test 4-42.
4.6.2 Depth Test 4-44.
4.6.3 Registers 4-46.
4.6.4 Stencil Example 4-47.
4.6.5 Depth Example 4-48.

4.7 Texture Address Unit 4-49.
4.7.1 Texture Interpolation 4-49.
4.7.2 Registers 4-50.
4.7.3 Texture Interpolation Example 4-51.

4.8 Texture Read Unit 4-53.
4.8.1 Read Unit 4-53.
4.8.2 Texture Filtering 4-54.
4.8.3 Texture Formatting 4-54.
4.8.4 Registers 4-54.
4.8.5 Texture Download Example 4-56.
4.8.6 Texture Mapping Example 4-57.

4.9 YUV Unit 4-58.
4.9.1 Chroma Test 4-58.

4.10 Framebuffer Read and Write Units 4-60.
4.10.1 Framebuffer Read 4-60.
4.10.2 Framebuffer Write 4-62.
4.10.3 Patching 4-62.
4.10.4 Packed Copies 4-63.
4.10.5 Image Downloads 4-63.
4.10.6 Fast Texture Download 4-63.
4.10.7 Hardware Writemasks 4-64.
4.10.8 Frame Blank Synchronization 4-64.
4.10.9 Registers 4-65.
4.10.10 Image Copy Example 4-67.

4.11 Color DDA Unit 4-68.
4.11.1 RGBA and Color–Index(CI) Modes 4-68.
4.11.2 Gouraud Shading 4-68.
4.11.3 Flat Shading 4-69.
4.11.4 Registers 4-70.
4.11.5 Flat Shading Example 4-70.
4.11.6 Gouraud Shaded Trapezoid Example 4-71.
4.11.7 Gouraud Shaded Line Example 4-71.

4.12 Texture/Fog/Blend 4-72.
4.12.1 Texture Application 4-72.
4.12.2 RGB Texture Application 4-72.
4.12.3 Fog Application 4-73.

Contents

xii

4.12.4 Fog Index Calculation – The Fog DDA 4-74.
4.12.5 Fogging Equation 4-75.
4.12.6 Alpha Blending 4-76.
4.12.7 Ramp Blend Mode 4-77.
4.12.8 Image Formatting 4-77.
4.12.9 Registers 4-77.
4.12.10 Texture Application Example 4-79.
4.12.11 FogExample 4-80.

4.13 Color Format Unit 4-81.
4.13.1 Color Formats 4-81.
4.13.2 Color Dithering 4-81.
4.13.3 ForceAlpha 4-81.
4.13.4 Registers 4-82.
4.13.5 Dither Example 4-82.
4.13.6 3:3:2 Color Format Example 4-82.
4.13.7 8:8:8:8 Color Format Example 4-82.

4.14 Logical Op Unit 4-84.
4.14.1 High Speed Flat Shaded Rendering 4-84.
4.14.2 Logical Operations 4-85.
4.14.3 Software Writemasks 4-85.
4.14.4 Registers 4-86.
4.14.5 XOR Example 4-86.
4.14.6 Software Writemask Example 4-86.

4.15 Host Out Unit 4-88.
4.15.1 Filtering 4-88.
4.15.2 Statistic Operations 4-89.
4.15.3 Synchronization 4-90.
4.15.4 Registers 4-91.
4.15.5 Filter Mode Example 4-92.
4.15.6 Picking Example 4-92.
4.15.7 Sync Interrupt Example 4-93.

5 Initialization 5-1.
5.1 Initializing the TVP4010 5-2.
5.2 System Initialization 5-3.

5.2.1 PCI 5-3.
5.2.2 Memory Configuration 5-3.
5.2.3 SVGA and Internal Video Timing Registers 5-3.
5.2.4 Screen Width 5-3.
5.2.5 Screen Clipping Region 5-4.
5.2.6 Localbuffer and Framebuffer Configuration 5-4.
5.2.7 Host Out Unit 5-6.
5.2.8 Disabling Specialized Modes 5-6.

5.3 Window Initialization 5-7.

 Contents

xiii Contents

5.3.1 Color Format 5-7.
5.3.2 Setting the Window Address and Origin. 5-7.
5.3.3 Writemasks 5-8.
5.3.4 Enabling Writing 5-8.
5.3.5 Setting Pixel Size 5-9.

5.4 Application Initialization 5-10.
5.5 Bypass Initialization 5-11.

6 Programming Tips 6-1.
6.1 PCI Bus Issues 6-2.

6.1.1 Improving PCI bus bandwidth for Programmed I/O and DMA 6-2.
6.1.2 PCI burst transfers under Programmed I/O 6-2.
6.1.3 Using PCI Disconnect under Programmed I/O 6-2.
6.1.4 Using bus mastership (DMA) 6-3.
6.1.5 Improving performance with DMA 6-3.

6.2 Graphics Hyperpipeline 6-4.
6.2.1 Disable Unused Units 6-4.
6.2.2 Avoid Unnecessary Register Updates 6-4.
6.2.3 Loading Registers in Unit Order 6-4.
6.2.4 Use of Continue Commands 6-5.

6.3 Area Filling Techniques 6-6.
6.3.1 Clearing Buffers Quickly 6-6.
6.3.2 Avoid Clearing Buffers 6-6.
6.3.3 Trapezoid Fills 6-6.

6.4 Copies and Downloads 6-8.
6.4.1 Copies 6-8.
6.4.2 Downloads 6-8.
6.4.3 Loading Textures 6-8.

6.5 Multi Buffering 6-10.
6.5.1 Fast Double Buffering 6-10.
6.5.2 Triple Buffering 6-10.

6.6 Overlays 6-11.
6.7 Memory Organization 6-12.
6.8 Chroma Test 6-13.

7 Graphics Register Reference 7-1.

8 Register Tables 8-1.

Appendix A Pseudocode Definitions A-1.

Appendix B Screen Widths Table B-1.

Appendix C Glossary C-1.

Index Index-1.

Figures

xiv

Figures

1–1 External Interfaces 1-3.
2–1 DMA Tag Description Format 2-10.
2–2 Indexed Register Format 2-12.
4–1 Hyperpipeline 4-3.
4–2 Example Triangle 4-4.
4–3 Screen aligned trapezoid and flat topped triangle 4-4.
4–4 Dominant and Subordinate Sides of a Triangle 4-5.
4–5 Rasterizing a triangle. 4-12.
4–6 Polyline 4-14.
4–7 Relationship between Bitmask and Scanning Directions 4-17.
4–8 TVP4010 Copy Operation 4-20.
4–9 Real Coordinate Representation 4-23.
4–10 Screen Scissor and User Scissor Tests 4-33.
4–11 Scissor Mode Register 4-34.
4–12 AreaStippleMode Register 4-35.
4–13 LBReadMode Register 4-39.
4–14 LBReadFormat / LBWriteFormat Register 4-40.
4–15 LBWriteMode Register 4-40.
4–16 Depth Interpolation 4-45.
4–17 Depth Derivative Format 4-45.
4–18 StencilMode Register 4-46.
4–19 StencilData Register 4-46.
4–20 DepthMode Register 4-46.
4–21 Window Register 4-47.
4–22 Texture Address Interpolation 4-49.
4–23 Fixed Point S and T Format 4-50.
4–24 Fixed Point Q Format 4-50.
4–25 TextureAddressMode 4-51.
4–26 TextureReadMode Register 4-55.
4–27 TextureMapFormat Register 4-55.
4–28 TextureDataFormat Register 4-56.
4–29 TexelLUTMode Register 4-56.
4–30 YUVMode Register 4-59.
4–31 ChromaUpperBound and ChromaLowerBound Registers 4-59.
4–32 FBReadMode Register 4-65.
4–33 FBWriteMode Register 4-65.

 Figures

xv Contents

4–34 FBReadPixel Register 4-66.
4–35 PackedDataLimits Register 4-66.
4–36 TVP4010 Color Representation 4-68.
4–37 Color Interpolation 4-69.
4–38 Fixed Point Color Format 4-69.
4–39 ColorDDAMode Register 4-70.
4–40 Fog Interpolation Over A Triangle 4-74.
4–41 Fog Interpolant Fixed Point Format 4-75.
4–42 Fogging 4-76.
4–43 TextureColorMode Register 4-78.
4–44 Texel0 Register – RGB format 4-78.
4–45 Texel0 Register – YUV format 4-78.
4–46 FogMode Register 4-79.
4–47 AlphaBlendMode Register 4-79.
4–48 DitherMode Register 4-82.
4–49 LogicalOpMode Register 4-86.
4–50 FilterMode Register 4-91.
4–51 StatisticMode Register 4-91.
4–52 PickResult Register 4-92.

Tables

xvi

Tables

2–1 Memory Regions 2-2.
2–2 Region 0 Address Map 2-2.
3–1 Supported Color Formats 3-9.
4–1 Rasterizer Command Registers 4-24.
4–2 Rasterizer Control Registers 4-26.
4–3 Render Command Register Fields 4-28.
4–4 Rasterizer Mode Register 4-30.
4–5 Localbuffer Read/Write Modes 4-38.
4–6 Stencil Comparison Modes 4-42.
4–7 Possible Update Operations for Stencil Planes 4-43.
4–8 Stencil Operations 4-43.
4–9 Stencil Sources 4-43.
4–10 Depth Comparison Modes 4-44.
4–11 Depth Sources. 4-44.
4–12 Depth Interpolation Registers 4-47.
4–13 Texture Interpolation Registers 4-51.
4–14 Chroma Test Modes 4-58.
4–15 Framebuffer Read/Write Modes 4-62.
4–16 Color Interpolation Registers 4-70.
4–17 Logical Operations 4-85.
4–18 Filter Modes 4-89.
6–1 Memory Organization 6-12.
8–1 Registers by Unit 8-2.
8–2 Registers by Name 8-6.
8–3 Registers by Address 8-9.
B–1 Partial Products B-1.

1-1

Overview

Chapter 1 presents a functional overview of the TVP4010 operation. Subjects
covered include external intefaces, memory subsystem, host interface, and
task switching.

Topic Page

1.1 Functional Overview 1-2.

Chapter 1

Functional Overview

 1-2

1.1 Functional Overview

TVP4010 is a single chip 3D graphics processor providing:

� 42M pixels/sec – textured, bilinear filtered with true per pixel perspective

� 800K polygons/sec – textured, bilinear filtered with true per pixel perspec-
tive

� Balanced 3D feature set

� Ideal for games and pervasive 3D

� High quality texture mapping

� Smooth shading and blending

� Optional Z buffer

� Fog and depth cueing

� Polygon based with advanced 3D sprite handling

� Leading Windows acceleration

� Accelerated video playback

� Fast on-chip SVGA

� Optimized software drivers

� Register level interface

� Low-cost PCI design

TVP4010 supports 8 and 16 bit RGB 3D rendering and 8, 16 and 24 bit RGB
and 8 bit color index 2D rendering.

The TVP4010 memory subsystem can hold up to 8 Mbytes of SGRAM. For vid-
eo applications using current SGRAM technology the useful range of screen
resolutions is up to 1600 x1200 pixels.

Functional Overview

1-3Overview

1.1.1 Memory Subsystem

The TVP4010 provides flexible support for the memory subsystem (see
Figure 1-1). This allows the system designer a wide choice of price/perfor-
mance tradeoffs.

The same physical memory holds all data used by the TVP4010. Internally the
data types are divided into texture, localbuffer, and framebuffer. The localbuf-
fer holds depth and stencil data; the framebuffer holds color data for display.

Figure 1–1. External Interfaces

Bus

Interface

Memory

Interface

VGA

Graphics Hyperpipeline
Host Bus SGRAM

Bypass

1.1.2 Host Interface

Conceptually, the TVP4010 can be viewed as a register file. Control registers
are primed with the information required for a primitive, and then to start the
chip drawing, a write is made to a command register

The TVP4010 registers can be accessed directly through the memory map.
Registers can be accessed either individually or in groups.

Functional Overview

 1-4

The chip also supports a bypass route to the memory to allow direct read/write
of pixels, and implementation of algorithms not directly supported by the
TVP4010.

1.1.3 Task Switching

Where multiple applications wish to make simultaneous access to the
TVP4010, it is the responsibility of the software driving the chip to handle the
loading of correct state. The TVP4010 has been designed to support a number
of different software architectures.

� Synchronous operation means that a new task can load its context without
waiting for current rendering to complete.

� All loadable states can be read back.

� A Sync command is provided to flush all rendering. This can be polled or
it can return an interrupt

1.1.4 SVGA

The TVP4010 contains a fast VGA core. The TVP4010 SVGA is used for DOS
VGA applications and during boot time before switching to use the Graphics
Hyperpipeline. This document does not cover VGA programming. Specific in-
formation on the TVP4010 VGA can be found in the TVP4010 Data Manual.
VGA information, such as standard registers, is described in the Program-
mer’s Guide to the EGA, VGA and Super VGA Cards by Richards F. Ferraro.

2-1

Programming Model

This chapter describes the programming model for the TVP4010. It describes
the interface conceptually rather than detailing specific registers and their
exact usage. In-depth descriptions of how to program the TVP4010 for specific
drawing operations can be found in later chapters.

Topic Page

2.1 Memory Regions 2-2

2.2 TVP4010 as a Register File 2-3.

2.3 TVP4010 I/O Interface 2-6

2.4 Interrupts 2-18.

2.5 Synchronization 2-19.

2.6 Host Memory Bypass 2-21.

2.7 Register Read Back 2-22.

2.8 Byte Swapping 2-23.

2.9 Red and Blue Swapping 2-24.

Chapter 2

Memory Regions

 2-2

2.1 Memory Regions

The TVP4010 is divided into memory regions as shown in Table 2–1. The re-
gion address map is shown in Table 2–2.

Table 2–1. Memory Regions

Region Address Space Bytes Description Comments

Config Configuration 256 PCI configuration PCI special

Zero Memory 128K Control registers relocatable

One Memory 8M Memory region one relocatable

Two Memory 8M Memory region two relocatable

Three I/O 16 Auxiliary I/F registers Reserved

Four Memory 256K Reserved Reserved

ROM Memory 64K Expansion ROM relocatable

SVGA Memory and I/O - SVGA addresses optional and fixed

Table 2–2. Region 0 Address Map

Address Range (hex) Description Byte Swap

0000.0000 - 0000.0FFF Control & Status No

0000.1000 - 0000.1FFF Memory control No

0000.2000 - 0000.2FFF GP FIFO access No

0000.3000 - 0000.3FFF Video control No

0000.4000 - 0000.4FFF RAMDAC No

0000.5000 - 0000.5FFF Auxiliary I/F No

0000.6000 - 0000.6FFF SVGA control No

0000.7000 - 0000.7FFF Reserved No

0000.8000 - 0000.FFFF GP registers No

0001.0000 - 0001.0FFF Control & Status Yes

0001.1000 - 0001.1FFF Memory control Yes

0001.2000 - 0001.2FFF GP FIFO access Yes

0001.3000 - 0001.3FFF Video control Yes

0001.4000 - 0001.4FFF RAMDAC Yes

0001.5000 - 0001.5FFF Auxiliary I/F Yes

0001.6000 - 0001.6FFF SVGA control Yes

0001.7000 - 0001.7FFF Reserved Yes

0001.8000 - 0001.FFFF GP registers Yes

TVP4010 as a Register File

2-3Programming Model

2.2 TVP4010 as a Register File

The simplest way to view the interface to the TVP4010 Graphic Processor is
as a flat block of memory-mapped registers (i.e. a register file). This register
file appears as part of the address map for TVP4010.

When a TVP4010 host software driver is initialized, it can map the register file
into its address space. Each register has an associated address tag, giving its
offset from the base of the register file (since all registers reside on a 64-bit
boundary, the tag offset is measured in multiples of 8 bytes). The most straight-
forward way to load a value into a register is to write the data to its mapped
address. In reality the chip interface comprises a 32 entry deep FIFO, and each
write to a register causes the written value and the registers address tag to be
written as a new entry in the FIFO.

Programming the TVP4010 to draw a primitive consists of writing values to the
appropriate registers followed by a write to a command register. This last write
triggers the start of drawing.

TVP4010 has approximately 200 registers. All registers are 32 bits wide and
should be 32-bit addressed. Many registers are split into bit fields, and it should
be noted that bit 0 is the least significant bit.

In future chip revisions, the register file may be extended, and currently
unused bits in certain registers may be assigned new meanings. Software
developers should ensure that only defined registers are written to and that
undefined bits in registers are always written as zeros. The only exception to
this rule is that in certain registers it is convenient to allow unmasked values
to be written to registers which hold numeric data. These fields are marked as
“not used” in Chapter 7 and elsewhere.

2.2.1 Register Types

TVP4010 has three main types of register:

� Control Registers

� Command Registers

� Internal Registers

Control Registers are updated only by the host where the chip effectively uses
them as read-only registers. Examples of control registers are the scissor clip
min and max registers. Once initialized by the host, the chip only reads these
registers to determine the scissor clip extents. Most registers are control
registers.

TVP4010 as a Register File

 2-4

Command Registers are those which, when written to, cause an action to
occur. Typically, the host will initialize the appropriate control registers and
then write to a command register to initiate drawing. Some command registers
such as ResetPickResult or Sync do not initiate rendering. Apart from these,
there are two types of command registers: begin-draw and continue-draw.
Begin-draw commands cause rendering to start with those values specified by
the control registers. Continue-draw commands cause drawing to continue
with internal register values as they were when the previous drawing operation
completed. Making use of continue-draw commands can significantly reduce
the amount of data that has to be loaded into TVP4010 when drawing multiple
connected objects such as polylines. Examples of command registers include
the Render and ContinueNewLine registers.

For convenience, this document refers to “sending a Render command to
TVP4010” rather than saying “the Render Command register is written to,
which initiates drawing.”

Internal Registers are not accessible to host software. They are used internally
by the chip to keep track of changing values. Some control registers have
corresponding internal registers. When a begin-draw command is sent and
before rendering starts, the internal registers are updated with the values in
the corresponding control registers. If a continue-draw command is sent, this
update does not happen and drawing continues with the current values in the
internal registers. For example, if a line is being drawn then the StartXDom and
StartY control registers specify the (x, y) coordinates of the first point in the line.
When a begin-draw command is sent, these values are copied into internal
registers. As the line drawing progresses, these internal registers are updated
to contain the (x, y) coordinates of the pixel being drawn. When drawing is
completed, the internal registers contain the (x, y) coordinates of the next point
to be drawn. If a continue-draw command is now given, these final (x, y)
internal values are not modified and subsequent drawing operations use these
values. However, if a begin-draw command had been used, the internal
registers would have been reloaded from the StartXDom and StartY registers.

For the most part, internal registers can be ignored. It is helpful to appreciate
that they exist in order to understand the continue-draw commands.

2.2.2 Efficiency Issues and Register Types

Software developers wishing to write device drivers for TVP4010 should
become familiar with the different types of registers. Some control registers
such as the StartXDom and StartY registers have to be updated for almost
every primitive whereas other control registers such as those for scissor clip
or logical ops can be updated much less frequently. Pre-loading of the

TVP4010 as a Register File

2-5Programming Model

appropriate control registers can reduce the amount of data that has to be
loaded into the chip for a given primitive thus improving efficiency. In addition,
as described above, the final values in internal registers can sometimes be
used for subsequent drawing operations.

The tables in chapter 8 list the graphics registers according to their type, name
and address.

TVP4010 I/O Interface

 2-6

2.3 TVP4010 I/O Interface

There are four ways of loading the TVP4010 registers:

� The host writes a value to the mapped address of the register.

� The host writes address-tag/data pairs to the FIFO.

� The host writes address-tag/data pairs to the FIFO via DMA.

� The host writes to raw memory mapped GP FIFO addresses.

In cases where the host writes data values directly to the chip via the register
file, consideration has to be given to FIFO overflow (unless PCI Disconnect is
enabled). The InFIFOSpace register indicates how many free entries remain
in the FIFO. Before writing to any register, the host must ensure that there is
enough space left in the FIFO. The values in this register can be read at any
time. When using DMA, the DMA controller will automatically ensure that there
is room in the FIFO before it performs further transfers. Thus, a buffer of any
size up to 64K 32 bit words can be passed to the DMA controller. Details of the
FIFO and DMA controller operation are described in subsection 2.3.2.

2.3.1 PCI Disconnect

The PCI bus protocol incorporates a feature known as PCI Disconnect, which
is supported by the TVP4010. PCI Disconnect is enabled by writing to bit zero
of the DisconnectControl register, which is at offset 0x68 in PCI Region0. If the
TVP4010 is in this mode and the host processor attempts to write to the full
FIFO, instead of the write being lost, then the TVP4010 chip asserts PCI
Disconnect, which causes the host processor to keep retrying the write cycle
until it succeeds.

This feature allows faster downloading of data to the TVP4010, since the host
does not need to poll the InFIFOSpace register. However, care should be used
with PCI Disconnect because the bus is effectively saturated by the host
processor until the TVP4010 frees up an entry in its FIFO. In general, this mode
should only be used either for operations where it is known that the TVP4010
can consume data faster than the host can generate it, or where there are no
time-critical peripherals sharing the PCI bus.

2.3.2 FIFO Control

The previous description in section 2.2 considered the TVP4010 interface to
be a register file. More precisely, when a data value is written to a register, this
value and the address tag for that register are combined and put into the FIFO

TVP4010 I/O Interface

2-7Programming Model

as a new entry. The actual register is not updated until the TVP4010 processes
this entry. In the case where the TVP4010 is busy performing a time
consuming operation (e.g. drawing a large texture mapped polygon) and not
draining the FIFO very quickly, it is possible for the FIFO to become full. If a
write to a register is performed when the FIFO is full, no entry is put into the
FIFO and that write is effectively lost.

The input FIFO is 32 entries deep and each entry consists of a tag/data pair;
an address word which addresses the register to be updated, followed by the
data to be sent to the register. The InFIFOSpace register can be read to
determine how many entries are free. The value returned by this register will
never be greater than 32.

An example of loading the TVP4010 registers using the FIFO follows. The
pseudocode fills a series of rectangles. Details of the conventions used in the
pseudocode examples can be found in Appendix B.

It is assumed that the data to draw a single rectangle consists of eight words
(including the Render command).

dXDom(0x0); // common set-up

dXSub(0x0);

dY(1);

for (i = 0; i < nrects; ++i) {

while (*InFIFOSpace < 8)

; // wait for room

StartXDom (rect->x1);

StartXSub (rect->x2);

Count (rect->y2 - rect->y1);

YStart(rect->y1);

Render (TVP4010_TRAPEZOID_PRIMITIVE);

 }

For simplicity, the example above shows constant polling of InFIFOSpace.
This is expensive in terms of bus utilization, so an improved polling loop is very
desirable.

To check the status of the FIFO before every write is inefficient, so it is checked
before loading the data for each rectangle. Since the FIFO is 32 entries deep,
a further optimization is to wait for all 32 entries to be free after every second
rectangle. Further optimizations can be made by moving dXDom, dXSub and

TVP4010 I/O Interface

 2-8

dY outside the loop (as they are constant for each rectangle) and doing the
FIFO wait after every third rectangle.

The InFIFOSpace FIFO control register contains the number of entries
currently free in the FIFO. The chip increments this register for each entry it
removes from the FIFO and decrements it each time the host puts an entry into
the FIFO. Before writing to the input FIFO, the user must check that there is
sufficient space by reading the InFIFOSpace register.

The Graphics Core (GC) FIFO interface provides a port through which both
GC register addresses and data can be sent to the input FIFO. A range of 4
Kbytes of host space is provided although all data may be sent through one
address in the range. All accesses go directly to the FIFO; the range is
provided to allow for data transfer schemes, which force the use of
incrementing addresses.

Note that the GC registers cannot be read through this interface. Command
buffers to be sent to the input FIFO interface may be read directly by the
TVP4010 via the DMA controller.

A data formatting scheme is provided to allow for multiple data words to be sent
with one address word where adjacent or grouped registers are being written,
or where one register is to be written many times.

Note:
The FIFO interface can be accessed at 32 bit boundaries. This is to allow a
direct copy from a DMA format buffer.

2.3.3 The DMA Interface

Loading registers directly via the FIFO is often an inefficient way to download
data to the TVP4010. Given that the FIFO can accommodate only a small
number of entries, the TVP4010 has to be frequently interrogated to determine
how much space is left. Also consider situations where an API function
requires a large amount of data to be sent to the TVP4010 . If the FIFO is
written to directly, then a return from this function is not possible until almost
all the data has been consumed by the TVP4010. This may take some time
depending on the types of primitives being drawn.

To avoid these problems, the TVP4010 provides an on-chip DMA controller
which can be used to load data from arbitrary sized (< 64K 32-bit words) host
buffers into the FIFO. In its simplest form, the host software has to prepare a
host buffer containing register address tag descriptions and data values. It
then writes the base address of this buffer to the DMAAddress register and the
count of the number of words to transfer to the DMACount register. Writing to
the DMACount register starts the DMA transfer and the host can now perform

TVP4010 I/O Interface

2-9Programming Model

other work. In general if the complete set of rendering commands required by
a given call to a driver function can be loaded into a single DMA buffer, then
the driver function can return. At the same time, the TVP4010 is reading data
from the host buffer and loading it into its FIFO. FIFO overflow never occurs
since the DMA controller automatically waits until there is room in the FIFO
before doing any transfers.

The only restriction on the use of DMA control registers is that before
attempting to reload the DMACount register the host software must wait until
previous DMA has completed. It is valid to load the DMAAddress register while
the previous DMA is in progress since the address is latched internally at the
start of the DMA transfer. Many display driver functions can be implemented
using the following skeleton structure:

do any pre-work

DMAAddress(address of dma_buffer);

while (TRUE) {

count = *DMACount; // note this is volatile

 if (count) {

 while (--count)

 ; // wait for count to expire

 }

 else

 break; // DMA completed

 }

copy render data into DMA buffer

DMACount(number of words in DMA buffer)

return

Using DMA leaves the host free to return to the application, while in parallel,
the TVP4010 is performing the DMA and drawing. This can increase
performance significantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g. drawing the same
object across multiple clipping rectangles). Since the TVP4010 DMA only
reads the buffer data, the data can be downloaded many times simply by
restarting the DMA. This can be very beneficial if composing the buffer data
is a time consuming task.

A further optimization is to use a double buffered mechanism with two DMA
buffers. This allows the second buffer to be filled before waiting for the previous
DMA to complete thus further improving the parallelism between host and the
TVP4010 processing.

TVP4010 I/O Interface

 2-10

do any pre-work

get free DMA buffer and mark as in use

put render data into this new buffer

DMAAddress(address of new buffer)

while (TRUE) {

count = *DMACount; // note this is volatile

 if (count) {

 while (--count)

 ; // wait for count to expire

 }

 else

 break; // DMA completed

 }

DMACount(number of words in new buffer)

mark the old buffer as free

return

The DMA buffer format consists of a 32-bit address tag description word
followed by one or more data words. The DMA buffer consists of one or more
sets of these formats. The following paragraphs describe the different types
of tag description words that can be used.

2.3.3.1 DMA Tag Description Format

When DMA is performed, each 32-bit tag description in the DMA buffer
conforms to the following format.

Figure 2–1. DMA Tag Description Format

reserved
08162431

Count or Mask Address Tagreserved

Mode

0 = Hold tag
1 = Increment tag

2 = Indexed tag

3 = Reserved

reserved

There are three different tag addressing modes for DMA: hold, increment and
indexed. The different DMA modes are provided to reduce the amount of data

TVP4010 I/O Interface

2-11Programming Model

that needs to be transferred, hence making better use of the available DMA
bandwidth. Each of these modes is described in the following sections. Each
row in the following diagrams represents a 32-bit value in the DMA buffer. The
address tag for each register is given in Chapter 7, Graphics Register
Reference.

2.3.3.2 Hold Format

address-tag with Count=n-1, Mode=0

value 1

...

value n

The hold format is commonly used for image download by setting the SyncOn-
HostData bit in the Render command. In this format the 32-bit tag description
contains a tag value and a count specifying the number of data words following
in the buffer. The DMA controller writes each of the data words to the same
address tag. This is useful for image download where pixel data is continuous-
ly written to the Color register. The bottom 9 bits specify the register to which
the data should be written; the high-order 16 bits specify the number of data
words (minus 1) which follow in the buffer and which should be written to the
address tag (note that the 2-bit mode field for this format is zero so a given tag
value can simply be loaded into the low order 16 bits).

A special case of this format is where the top 16 bits are zero indicating that
a single data value follows the tag (i.e. the 32-bit tag description is simply the
address tag value itself). This allows simple DMA buffers to be constructed
which consist of tag/data pairs. For example, to render a horizontal span 10
pixels long starting from (2,5) the DMA buffer could look like this:

StartXDom

2 << 16

StartY

5 << 16

StartXSub12 << 16

Count

1

Render

(trapezoid render command)

2.3.3.3 Increment Format

address-tag with Count=n-1, Mode=1

TVP4010 I/O Interface

 2-12

value 1

...

value n

The increment format is similar to the hold format except that as each data
value is loaded the address tag is incremented (the value in the DMA buffer
is not changed; the TVP4010 updates an internal copy). Thus, this mode
allows contiguous the TVP4010 registers to be loaded by specifying a single
32-bit tag value followed by a data word for each register. The low-order 9 bits
specify the address tag of the first register to be loaded. The 2 bit mode field
is set to 1 and the high-order 16 bits are set to the count (minus 1) of the
number of registers to update. To enable use of this format, the TVP4010
register file has been organized so that registers which are frequently loaded
together have adjacent address tags. For example, the 8 AreaStipplePattern
registers can be loaded as follows:

AreaStipplePattern0, Count=7, Mode=1

row 0 bits

row 1 bits

...

row 7 bits

2.3.3.4 Indexed Format

The TVP4010 address tags are 9-bit values. For the Indexed DMA Format,
these 9-bit values are organized into major groups and within each group there
are up to 16 tags. The low-order 4 bits of a tag give its offset within the group.
The high-order 5 bits give the major group number. See Chapter 8, for a listing
of Register Tables, showing the individual registers with their Major Group and
Offset.

Figure 2–2. Indexed Register Format

04

Major Group Offset

8

The indexed register format allows up to 16 registers within a group to be
loaded while still only specifying a single address tag description word.

address tag with Mask, Mode=2

value 1

...

TVP4010 I/O Interface

2-13Programming Model

value n

If the Mode of the address tag description word is set to indexed mode, the
high-order 16 bits are used as a mask to indicate which registers within the
group are to be used. The bottom 4 bits of the address tag description word
are unused. The group is specified by bits 4 to 8. Each bit in the mask is used
to represent a unique tag within the group. If a bit is set, then the corresponding
register will be loaded. The number of bits set in the mask determines the num-
ber of data words that should be following the tag description word in the DMA
buffer. The data is stored in order of increasing corresponding address tag. For
example,

0x003280F0

value 1

value 2

value 3

The Mode bits are set to 2 so this is indexed mode. The Mask field (0x0032)
has 3 bits set so there are three data words following the tag description word.
Bits 1, 4 and 5 are set so the tag offsets are 1, 4 and 5. The major group is given
by the bits 4-8 which are 0x0F (in indexed mode bits 0-3 are ignored). Thus
the actual registers to update have address tags 0x0F1, 0x0F4 and 0x0F5.
These are updated with value 1, value 2, and value 3 respectively.

2.3.3.5 DMA Example

The following pseudo-code shows the previous example of drawing a series
of rectangles but this time using the DMA controller. This example uses a
single DMA buffer and the simplest Hold Mode for the tag description words
in the buffer.

UINT32 *pbuf;

DMAAddress (physical address of dma_buffer)

while (*DMACount != 0)

; // wait for DMA to complete

pbuf = dma_buffer;

*pbuf++ = TVP4010TagdXDom;

*pbuf++ = 0;

*pbuf++ = TVP4010TagdXSub;

*pbuf++ = 0;

*pbuf++ = TVP4010TagdY;

*pbuf++ = 1 << 16;

TVP4010 I/O Interface

 2-14

for (i = 0; i < nrects; ++i) {

*pbuf++ = TVP4010TagStartXDom;

*pbuf++ = rect->x1 << 16;// Start dominant edge

*pbuf++ = TVP4010TagStartXSub

*pbuf++ = rect->x2 << 16;// Start of subordinate edge

*pbuf++ = TVP4010TagCount;

*pbuf++ = rect->y2 - rect->y1;

*pbuf++ = TVP4010TagYStart;

*pbuf++ = rect->y1 << 16;

*pbuf++ = TVP4010TagRender;

*pbuf++ = TVP4010_TRAPEZOID_PRIMITIVE;

 }

// initiate DMA

DMACount((int)(pbuf - dma_buffer))

The example assumes that a host buffer has been previously allocated and is
pointed at by dma_buffer. It is worth noting that significantly less data would
be required if indexed tags were used in this example.

2.3.3.6 DMA Buffer Addresses

The host software must generate the correct DMA buffer address for the
TVP4010 DMA controller. This typically means that the address passed to the
TVP4010 must be the physical address of the DMA buffer in host memory. The
buffer must also reside at contiguous physical addresses as accessed by the
TVP4010. On a system which uses virtual memory for the address space of
a task, some method of allocating contiguous physical memory and mapping
this into the address space of a task must be used.

If the virtual memory buffer maps to non-contiguous physical memory, the
buffer must be divided into sets of contiguous physical memory pages and
each of these sets must be transferred separately. In this situation, the whole
DMA buffer cannot be transferred in one go; the host software must wait for
each set to be transferred. Often the best way to handle these fragmented
transfers is via an interrupt handler.

2.3.3.7 DMA Interrupts

The TVP4010 provides interrupt support, as an alternative means of
determining when a DMA transfer is complete. This interrupt support can
provide a considerable speed advantage. If enabled, the interrupt is generated
whenever the DMACount register changes from a non-zero to a zero value.

TVP4010 I/O Interface

2-15Programming Model

Since the DMACount register is decremented every time a data item is
transferred from the DMA buffer, this happens when the last data item is
transferred from the DMA buffer.

To enable the DMA interrupt, the DMAInterruptEnable bit must be set in the
IntEnable register. The interrupt handler should check the DMAFlag bit in the
IntFlags register to determine that a DMA interrupt has actually occurred. To
clear the interrupt a word should be written to the IntFlags register with the
DMAFlag bit set to one.

A typical use of DMA interrupts might be as follows:

prepare DMA buffer

DMACount(n); // start a DMA transfer

prepare next DMA buffer

while (*DMACount != 0) {

mask interrupts

set DMA Interrupt Enable bit in IntEnable register

sleep on interrupt handler wake up

unmask interrupts

 }

DMACount(n) // start the next DMA sequence

The interrupt handler could then be

if (*IntFlags & DMA Flag bit) {

reset DMA Flag bit in IntFlags

send wake up to main task

 }

Interrupts are complicated and depend on the facilities provided by the host
operating system. The pseudocode above only hints at the system details.

This scheme frees the processor for other work while DMA is being completed.
Since the overhead of handling an interrupt is often quite high for the host
processor, the scheme should be tuned to allow a period of polling before
sleeping on the interrupt.

2.3.4 Output FIFO and Graphics Processor FIFO Interface

To read data back from the TVP4010 an output FIFO is provided. Each entry
in this FIFO is 32-bits wide, and it can hold either tag or data values. Thus its
format is unlike the input FIFO whose entries are always tag/data pairs (think

TVP4010 I/O Interface

 2-16

of each entry in the input FIFO as being 41 bits wide; 9 bits for the tag and 32
bits for the data). The type of data written by the TVP4010 to the output FIFO
is controlled by the FilterMode register. This register allows filtering of output
data in various categories including the following:

� Depth: the output in this category results from an image upload of the
Depth buffer.

� Stencil: the output in this category results from an image upload of the
Stencil buffer.

� Color: the output in this category results from an image upload of the
framebuffer.

� Synchronization: synchronization data is sent in response to a Sync com-
mand.

The data for the FilterMode register consists of 2 bits per category. If the least
significant of these two bits is set (0x1), output of the register tag for that
category is enabled. If the most significant bit is set (0x2), output of the data
for that category is enabled. Both the tag and data output can be enabled at
the same time. In this case, the tag is written first to the FIFO followed by the
data. The FilterMode register is described in more detail in Section 4.15.

For example, to perform an image upload from the framebuffer, the FilterMode
register should have data output enabled for the Color category. Then, the
rectangular area to be uploaded should be described to the Rasterizer. Each
pixel that is read from the framebuffer is placed into the output FIFO. When the
output FIFO is full, the TVP4010 blocks internally until space becomes
available. It is the programmer’s responsibility to read all data from the output
FIFO. For example, it is important to know how many pixels should result from
an image upload and to read exactly this many from the FIFO.

To read data from the output FIFO, the Output FIFO Words register should first
be read to determine the number of entries in the FIFO (reading from the FIFO
when it is empty returns undefined data). This is the number of 32-bit data
items to be read from the FIFO. This procedure is repeated until all the
expected data or tag items have been read. The address of the output FIFO
is described below.

All expected data must be read back. The TVP4010 will block when the output
FIFO is full. Programmers must be careful to avoid the deadlock condition that
results if the host is waiting for space to become free in the input FIFO while
the TVP4010 is waiting for the host to read data from the output FIFO.

2.3.5 Graphics Processor FIFO Interface

The TVP4010 has a sequence of 1K x 32 bit addresses in the PCI Region 0
address map called the Graphics Processor FIFO Interface. To read from the

TVP4010 I/O Interface

2-17Programming Model

output FIFO, any address in this range can be read (normally a program will
choose the first address and use this as the address for the output FIFO). All
32-bit addresses in this region perform the same function. The range of
addresses is provided for data transfer schemes that force the use of
incrementing addresses.

Writing to a location in this address range provides raw access to the input
FIFO. Again, the first address is normally chosen. Thus, the same address can
be used for both input and output FIFOs. Reading this location gives access
to the output FIFO; writing gives access to the input FIFO.

Writing to the input FIFO by this method is different from writing to the memory
mapped register file. Since the register file has a unique address for each
register, writing to this unique address allows the TVP4010 to determine the
register for which the write is intended. This allows a tag/data pair to be
constructed and inserted into the input FIFO. When writing to the raw FIFO
address an address tag description must first be written followed by the
associated data. In fact, the format of the tag descriptions and the data that
follows is identical to that described above for DMA buffers. Instead of using
the TVP4010 DMA, it is possible to transfer data to the TVP4010 by
constructing a DMA-style buffer of data and then copying each item in this
buffer to the raw input FIFO address. Based on the tag descriptions and data
written the TVP4010 constructs tag/data pairs to enter as real FIFO entries.
The DMA mechanism can be thought of as an automatic way of writing to the
raw input FIFO address.

Note, that when writing to the raw FIFO address the FIFO full condition must
still be checked by reading the InFIFOSpace register. However, writing tag
descriptions does not cause any entries to be entered into the FIFO; such a
write simply establishes a set of tags to be paired with the subsequent data.
Thus, free space need be ensured only for actual data items that are written
(not the tag values). For example, in the simplest case where each tag is
followed by a single data item and assuming that the FIFO is empty, then 32
writes are possible before checking again for free space.

See the TVP4010 Data Manual for more details of the Graphics Processor
FIFO Interface address range.

Interrupts

 2-18

2.4 Interrupts

The TVP4010 provides interrupt facilities for the following:

� Sync: issued when a Sync command is sent with the interrupt bit set; used
to indicate that the graphics processor is idle. Synchronization is
described further in subsection 2.5.

� Error: issued under certain error conditions, such as an attempt to write
to a full FIFO.

� Vertical Retrace: issued at the start of the vertical blank period.

� Scanline: issued at the start of a specified scanline.

� DMA: functions as described in subsection 2.3.3

All interrupts can be individually enabled and disabled. Refer to the TVP4010
Data Manual for more details.

Synchronization

2-19Programming Model

2.5 Synchronization

There are two main cases where the host must synchronize with the TVP4010:

� before reading back from the TVP4010 registers

� before directly accessing the memory via the bypass mechanism

Also the host must synchronize with the TVP4010 for framebuffer
management tasks such as double buffering, though this may be better
handled using the SuspendUntilFrameBlank command. Synchronizing with
the TVP4010 implies waiting for any pending DMA to complete and waiting for
the chip to complete any processing currently being performed. The following
pseudo-code shows the general scheme:

TVP4010Data data;

// wait for DMA to complete

while (*DMACount != 0) {

poll or wait for interrupt

 }

while (*InFIFOSpace < 2) {

; // wait for free space in the FIFO

}

// enable sync output and send the Sync command

data.Word = 0;

data.FilterMode.Synchronization = 0x1;

FilterMode(data.Word);

Sync(0x0);

/* wait for the sync output data */

do {

while (*OutFIFOWords == 0)

; // poll waiting for data in output FIFO

} while (*OutputFIFO != Sync_tag);

Initially, wait for DMA to complete as normal. Then wait for space to become
free in the FIFO (since the DMA controller actually loads the FIFO). Space for
two registers is needed: one register to enable generation of an output sync
value, and the second register for the Sync command itself. The enable flag
can be set at initialization time. The output value is generated only when a
Sync command has been sent and the TVP4010 has completed all
processing.

Synchronization

 2-20

Rather than polling, it is possible to use a Sync interrupt as mentioned in the
previous section. As well as enabling the interrupt and setting the filter mode,
the data sent in the Sync command must have the most significant bit set in
order to generate the interrupt. The interrupt is generated when the tag or data
reaches the output end of the Host Out FIFO. Use of the Sync interrupt has
to be considered carefully as the TVP4010 will generally empty the FIFO more
quickly than it takes to set up and handle the interrupt.

Host Memory Bypass

2-21Programming Model

2.6 Host Memory Bypass

Normally, the host will access memory indirectly via commands sent to the
TVP4010 FIFO interface. However, the TVP4010 does provide the whole
memory as part of its address space so that it can be memory mapped by an
application. Access to the memory via this route is independent of the
TVP4010 FIFO.

Drivers may choose to use direct access to memory for algorithms which are
not supported by the TVP4010 or for better performance in some specific
cases. This may be so, for example, when multiple pixels can be written
simultaneously and there is minimal host software overhead.

A driver using the bypass mechanism should synchronize memory accesses
made through the FIFO with those made directly through the memory map. If
data is written to the FIFO and then an access is made to the memory, it is
possible that the memory access will occur before the commands in the FIFO
have been fully processed. This lack of temporal ordering is generally
undesirable.

There are two windows through which the memory can be accessed. Each
window can have its own data formatting control that allows for different forms
of byte swapping and data packing. If the framebuffer is set to use the
5:5:5:1Front and 5:5:5:1Back color modes, two pixels are packed into each 32
bit word, but each pixel belongs to a different buffer. Adjacent pixels in the
same buffer are separated by 16 bits. As some software has difficulty with
pixels that are not packed together, the memory windows can be configured
to remap the data so that only the front or back buffer is visible, and it appears
packed.

Register Read Back

 2-22

2.7 Register Read Back

Under some operating environments, multiple tasks will want access to the
TVP4010 chip. Sometimes a server task or driver will want to arbitrate access
to the TVP4010 on behalf of multiple applications. In these circumstances, the
state of the TVP4010 chip may need to be saved and restored on each context
switch. To facilitate this, the TVP4010 registers can be read back. For details
of which registers are readable, see Appendix D, Register Tables. Internal and
command registers cannot be read back.

To perform a context switch the host must first synchronize with the TVP4010.
This means sending a Sync command and waiting for the sync output data to
appear in the output FIFO. After this the registers can be read back.

To read the TVP4010 register, the host reads the same address that is used
for a write, i.e. the base address of the register file plus the offset value for the
register.

Note that since internal registers cannot be read back, care must be taken
when context switching a task that is making use of continue-draw commands.
Continue-draw commands rely on the internal registers maintaining their
previous state. This state will be destroyed by any rendering work done by a
new task. To prevent this, continue-draw commands should be performed via
DMA since the context switch code has to wait for outstanding DMA to
complete. Alternatively, continue-draw commands can be performed in a
non-preemptable code segment.

Normally, reading back individual registers should be avoided. The need to
synchronize with the chip can adversely affect performance. It is usually more
appropriate to keep a software copy of the register that is updated whenever
the actual register is changed.

Byte Swapping

2-23Programming Model

2.8 Byte Swapping

Internally the TVP4010 operates in little-endian mode. However, the TVP4010
is designed to work with both big-endian and little-endian host processors.
Since the PCI Bus specification defines that byte ordering is preserved
regardless of the size of the transfer operation, the TVP4010 provides facilities
to handle byte swapping. See the TVP4010 Data Reference Manual for more
details of byte-swapping via the PCI bus.

Additional support is provided within the graphics core of the chip to byte swap
images and bitmasks as they are transferred to and from the host. These
support mechanisms are documented in chapter 4.

Red and Blue Swapping

 2-24

2.9 Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will usually force a given
interpretation for true color pixel values. For example, 32-bit pixels will be
interpreted as either RGB (red at byte 2, green at byte 1 and blue at byte 0)
or BGR (blue at byte 2 and red at byte 0). The byte position for red and blue
may be important for software which has been written to expect one byte order
or the other, in particular when handling image data stored in a file.

The TVP4010 provides three registers to specify the byte positions of blue and
red internally. In the Texture/Fog/Blend unit the AlphaBlendMode register
contains a 1-bit field called ColorOrder. If the color order bit is set to zero, the
byte ordering is BGR; if the bit is set to one, the ordering is RGB. As well as
setting this bit in the Alpha Blend unit, it must also be set in the Color Format
unit and the Texture Read unit via the DitherMode and TextureDataFormat
registers.

3-1

Memory I/O and Organization

This section describes the arrangement of data stored in memory. Although
the TVP4010 has a single unified memory space. For ease of reference, this
is divided into three buffers: the localbuffer, framebuffer and texture buffer. Any
of these buffers can be any size at any position in the memory.

For 3D operation associated with the framebuffer there would normally be a
localbuffer to hold depth and/or stencil information. A texture buffer may be
present if needed. For 2D operation the localbuffer is not generally be used,
but the texture buffer may be used to store pixmaps.

Topic Page

3.1 Patching 3-2.

3.2 Localbuffer 3-3.

3.3 Framebuffer 3-5.

3.4 Double Buffering 3-12.

3.5 Texture Buffer 3-17.

Chapter 3

Patching

 3-2

3.1 Patching

The TVP4010 supports an optional scheme for organizing memory, known as
“patching”. Data is normally stored linearly in memory such that incrementing
addresses move from left to right along a scanline of the appropriate buffer.
The type of memory supported by the TVP4010 uses a page structure which
allows fast accesses within a 2-Kbyte region, but imposes a penalty for moving
to a new 2-Kbyte region. This page structure favors access patterns that move
along a scanline but is inefficient for moving vertically as the large change in
address may cause a page break.

Patched data is organized so that there is less penalty for moving vertically in
a buffer at the expense of a decrease in performance for moving horizontally.
This is done by organizing memory such that a two-dimensional region or
patch in the buffer corresponds to a linear sequence in memory. A buffer
comprises many patches.

Two patch modes are supported which differ in the detail of how the data is
organized within the patch. Normal patch mode is used for localbuffer and
framebuffer data. Subpatch mode is used for texture and framebuffer data.
Patched data cannot be displayed, so patching of framebuffer data is normally
only done for off-screen bitmaps or when processing localbuffer or texture data
through the framebuffer units.

The TVP4010 has full support for patching data that is downloaded from the
host. If the programmer wishes to supply data that is already patched, the
following algorithms show how to generate the XY coordinate in the source
data for a given XY coordinate in the destination buffer.

For normal patch data X and Y coordinate bits are combined as follows:

X coord bit pattern = = X 0,X 1,X 2,Y 0,Y 1,Y 2,X 3,X 4,X 5,X 6,

Y coord bit pattern = = Y & ~0x7

For subpatch data X and Y coordinate bits are combined as follows:

X coord bit pattern = =
X0,Y 0,X 1,Y 1,X 2,Y 2,X 3,Y 3,X 4,Y 4,X 5,X 6,

Y coord bit pattern = = Y & ~0x1F

If texture data is 4 bits per texel, it is loaded two texels at a time as 8-bit values.
In this mode a different patch algorithm is used to allow for writing data as 8
bits and reading it as 4 bits. For subpatchpack data X and Y coordinate bits
are combined as follows, where each XY value indexes 8 bits:

X coord bit pattern = =
Y0,X 0,Y 1,X 1,Y 2,X 2,Y 3,X 3,Y 4,X 4,X 5,X 6,

Y coord bit pattern = = Y & ~0x1F

Localbuffer

3-3Memory I/O and Organization

3.2 Localbuffer

The localbuffer holds the Depth and Stencil information corresponding to each
displayed pixel. The Depth field can be either 15 or 16 bits wide and the Stencil
field either 1 or 0 bits wide. The total width of the localbuffer data cannot be
greater than 16 bits. If a Stencil field is defined, then it occupies bit 15; the
depth field always starts at bit 0.

The format of the localbuffer is specified in two places: the LBReadFormat
register and the LBWriteFormat register.

3.2.1 Localbuffer Coordinates

The translation from the internal coordinate system to the external address
map involves setting the base address of the window (or screen if coordinates
are screen relative) and positioning the origin in either the top left or bottom
left corner. The origin is specified in the LBReadMode register.

The actual equations used to calculate the localbuffer address to read and
write are:

Bottom left origin:

Destination address = LBWindowBase - Y * W + X

Source address = LBWindowBase - Y * W + X + LBSour-
ceOffset

Top left origin:

Destination address = LBWindowBase + Y * W + X

Source address = LBWindowBase + Y * W + X + LBSour-
ceOffset

where:

X is the pixel’s X coordinate.

Y is the pixel’s Y coordinate.

LBWindowBase holds the base address in the localbuffer of the current window.

LBSourceOffset is normally zero except during a copy operation where data is
read from one address and written to another address. The
offset between source and destination is held in the
LBSourceOffset register.

W is the screen width. Only a subset of widths are supported and
these are encoded into the PP0, PP1 and PP2 fields in the
LBReadModeregister. See Appendix C for more details.

Localbuffer

 3-4

This produces the localbuffer address in pixels. For the TVP4010, the
localbuffer data is always 16 bits so the physical byte address is two times the
pixel address. The destination address is the address that data will be written
to; data may also be read from this address if read-modify-write operations are
needed such as depth testing. The source address is mainly used for copy
operations and is only used for reading data.

Framebuffer

3-5Memory I/O and Organization

3.3 Framebuffer

The framebuffer holds color data produced by the TVP4010. The framebuffer
may hold both displayed and non-displayed data. Color buffers can be placed
anywhere in memory; there is no restriction on areas that can be displayed
from.

There may be several buffers, such as the front and back buffers of a double
buffered system, or the left and right buffers of a stereo system. No restrictions
are placed on the number or organization of the buffers other than the total
amount of memory fitted.

To access alternative buffers either the FBPixelOffset register can be loaded,
or the base address of the window held in the FBWindowBase register can be
redefined.

3.3.1 Framebuffer Coordinates

Coordinate generation for the framebuffer is similar to that for the localbuffer
except for the addition of FBPixelOffset. The WindowOrigin bit in the FBRead-
Mode register selects top left or bottom left as the origin for the framebuffer.

The actual equations used to calculate the framebuffer address to read and
write are:

Bottom left origin:

Destination address = FBWindowBase - Y * W + X + FBPixe-
lOffset

Source address = FBWindowBase - Y * W + X + FBPixelOffset
+ FBSourceOffset

Top left origin:

Destination address = FBWindowBase + Y * W + X + FBPixe-
lOffset

Source address = FBWindowBase + Y * W + X + FBPixelOffset
+ FBSourceOffset

Framebuffer

 3-6

where:

X is the pixel’s X coordinate,

Y is the pixel’s Y coordinate,

FBWindowBase holds the base address in the framebuffer of the current
window.

FBPixelOffset is normally zero except when multi-buffer writes are needed
when it gives a way to access pixels in alternative buffers with-
out changing the FBWindowBase register. This is useful as the
window system may be asynchronously changing the window’s
position on the screen. It is held in the FBPixelOffset register.

FBSourceOffset is normally zero except during a copy operation where data is
read from one address and written to another address. The
FBSourceOffset is held in the FBSourceOffset register.

W is the screen width. Only a subset of widths are supported and
these are encoded into the PP0, PP1 and PP2 fields in the
FBReadMode register. See the table in Appendix B for more
details.

These address calculations translate a 2D address into a linear address so
non-power of two framebuffer widths (e.g. 640) are economical in memory.
The address is in pixels; this is translated to a physical byte address by
multiplying by the number of bytes in the pixel.

The width is specified as the sum of selected partial products which are
selected by the fields PP0, PP1 and PP2 in the FBReadMode register. This is
the same mechanism used to set the width of the localbuffer; however, the
widths may be set independently. The range of widths supported are tabulated
in Appendix C, together with the values for each of the PP fields. This table
holds all the common screen widths.

For arbitrary screen sizes, for instance when rendering to off-screen memory
such as bitmaps the next largest width from the table must be chosen. The
difference between the table width and the bitmap width is the unused strip of
pixels down the right hand side of the bitmap.

Note that such bitmaps can be copied to the screen only as a series of
scanlines rather than as a rectangular block, unless the Texture Read unit is
used. In this case the stride for the read can be set differently from the write
by means of the partial products. However, windowing systems often store
offscreen bitmaps in rectangular regions that use the same stride as the
screen. In this case normal bitblts can be used.

Framebuffer

3-7Memory I/O and Organization

3.3.2 Framebuffer Color Formats

The contents of the framebuffer can be regarded in two ways:

� As a collection of fields of up to 32 bits with no meaning or assumed format
as far as the TVP4010 is concerned. Bit planes may be allocated to control
cursor, color look up tables (LUTs), multi-buffer visibility or priority
functions. In this case the TVP4010 will be used to set and clear bit planes
quickly but not perform any color processing such as interpolation or
dithering. All color processing can be disabled so that raw reads and writes
are done and the only operations performed are writemasking and logical
ops. This allows the control planes to be updated and modified as
necessary.

� As a collection of one or more color components. All the processing of
color components, except for the final writemask and logical ops are done
using the internal color format . The final stage before writemask and
logical ops processing converts the internal color format to that required
by the physical configuration of the framebuffer and video logic. The range
of supported formats are given in Table 3–1. The nomenclature n@m
means this component is n bits wide and starts at bit position m in the
framebuffer. The least significant bit position is 0 and a dash in a column
indicates that this component does not exist for this mode.

Some important points to note:

� The alpha channel, when present, is always associated with the RGB
color channels rather than being a separate buffer. This allows it to be
moved in parallel and to work correctly in multi-buffer updates and double
buffering.

� For the Front and Back modes the data value is duplicated in both buffers.
In general, if the data format does not take 32 bits the data is repeated in
the empty bit planes. If the data format requires 8 bits, the same value is
repeated in all four bytes of the word. The pixel size determines how many
of the bytes are written to memory. If a 16 bit format is chosen (e.g.
5:5:5:1), the data is repeated in the upper and lower halves of the word.
If the pixel size is set to 16 bits, only half the word is written to memory;
if the pixel size is set to 32 bits then both halves are written, with the same
data in each. A writemask can be used to select which bits are written. This
is used for certain types of double buffering. The front and back modes are
used in the alpha blend unit to extract the appropriate buffer.

� The offset modes (10 and 11) format the colors into a 7 bit value and then
add 64 to the result. This avoids reserved entries in window-system color
tables.

Framebuffer

 3-8

� YUV formats are only available as textures. the TVP4010 can convert
YUV textures to RGB and apply them to polygons; it cannot convert RGB
to YUV for storage. If a YUV texture is being loaded into the chip it should
be done as raw data or converted to RGB as it is loaded.

� The CI4 format is only available as a texture.

� When reading the framebuffer, RGBA components are scaled to their
internal width if needed for alpha blending.

� The color format of the framebuffer is independent of the color format of
the texture buffer; the texture buffer supports the same formats as the
framebuffer plus some for YUV color formats.

Color information is stored as values of red, green and blue (RGB) with or with-
out alpha values. Alternatively, it can be stored as a color index value (CI)
where each value references an entry in a color look up table that contains
RGB values.

The color format information needs to be stored in three places: the Dither-
Mode register, the AlphaBlendMode register and the TextureDataFormat
register.

Framebuffer

3-9Memory I/O and Organization

Table 3–1. Supported Color Formats

Internal Color Channels

Format Color Order Name R/Y G/U B/V A

BGR 0 BGR 8:8:8:8 8@0 8@8 8@16 8@24

1 BGR 5:5:5:1Front 5@0 5@5 5@10 1@15

2 BGR 4:4:4:4 4@0 4@4 4@8 4@12

5 BGR 3:3:2Front 3@0 3@3 2@6 0

6 BGR 3:3:2Back 3@8 3@11 2@14 0

9 BGR 2:3:2:1Front 2@0 3@2 2@5 1@7

10 BGR 2:3:2:1Back 2@8 3@10 2@13 1@15

11 BGR 2:3:2FrontOff 2@0 3@2 2@5 0

12 BGR 2:3:2BackOff 2@8 3@10 2@13 0

13 BGR 5:5:5:1Back 5@16 5@21 5@26 1@31

16 BGR 5:6:5Front 5@0 6@5 5@11 0

17 BGR 5:6:5Back 5@16 6@21 5@27 0

YUV 18 BGR YUV444 8@0 8@8 8@16 8@24

19 BGR YUV422 8@0 8@8 8@8 0

RGB 0 RGB 8:8:8:8 8@16 8@8 8@0 8@24

1 RGB 5:5:5:1Front 5@10 5@5 5@0 1@15

2 RGB 4:4:4:4 4@8 4@4 4@0 4@12

5 RGB 3:3:2Front 3@5 3@2 2@0 0

6 RGB 3:3:2Back 3@13 3@10 2@8 0

9 RGB 2:3:2:1Front 2@5 3@2 2@0 1@7

10 RGB 2:3:2:1Back 2@13 3@10 2@8 1@15

11 RGB 2:3:2FrontOff 2@5 3@2 2@0 0

12 RGB 2:3:2BackOff 2@13 3@10 2@8 0

13 RGB 5:5:5:1Back 5@26 5@21 5@16 1@31

16 RGB 5:6:5Front 5@11 6@5 5@0 0

17 RGB 5:6:5Back 5@27 6@21 5@16 0

YUV 18 RGB YUV444 8@16 8@8 8@0 8@24

19 RGB YUV422 8@8 8@8 8@0 0

CI 14 - CI8 8@0 0 0 0

15 - CI4 4@0 0 0 0

Notes: 1) The DitherMode register does not support the YUV444, YUV422 or CI4 formats.

2) The AlphaBlendMode register does not support the YUV444, YUV422 or CI4 formats.

Framebuffer

 3-10

3.3.3 Special Memory Modes

The TVP4010 uses Synchronous Graphics RAM (SGRAM) to store data.
SGRAM devices usually have special features that are particularly useful for
graphics.

3.3.3.1 Hardware Writemasks

These allow writemasking in the framebuffer without incurring a performance
penalty. If hardware writemasks are not available, the TVP4010 must be
programmed to read the memory, merge the value with the new value using
the writemask, and write it back.

To use hardware writemasking, the required writemask is written to the
FBHardwareWriteMask register, the FBSoftwareWriteMask register should
be set to all 1s, and the number of framebuffer reads is set to 0 (for normal
rendering). This is achieved by clearing the ReadSource and ReadDestination
enables in the FBReadMode register.

To use software writemasking (if hardware masks are not available), the
required writemask is written to the FBSoftwareWriteMask register and the
number of framebuffer reads is set to 1 (for normal rendering). This is achieved
by setting the ReadDestination enable in the FBReadMode register.

3.3.3.2 Block Writes

Block writes cause consecutive pixels in the framebuffer to be written
simultaneously. This is useful when filling large areas but does have some
restrictions:

� No depth or stencil testing can be done

� All the pixels must be written with the same value so no color interpolation,
alpha blending, dithering or logical ops can be done

Block writes are not restricted to rectangular areas and can be used for any
trapezoid. Hardware writemasking is available during block writes, but not
software writemasking. The scissor tests and extent checking operate
correctly with block writes, and bitmask patterns can be applied.

The FBBlockColor register holds the value to write to each pixel. Note that this
register should not be updated immediately after a Render command which
performs a block write.

Sending a Render command with the PrimitiveType field set to “trapezoid” and
the FastFillEnable field set will then cause block filling of the area. Note that
during a block fill any inappropriate state is ignored so even when stippling,

Framebuffer

3-11Memory I/O and Organization

color interpolation, depth testing and/or logical ops, for example, are enabled
they have no effect. However, scissor clipping does function correctly with
block writes.

The TVP4010 always writes 32 pixels per block fill. It takes care of any partial
blocks at the beginning or end of spans.

Double Buffering

 3-12

3.4 Double Buffering

Double buffering is a technique used to achieve visually smooth animation, by
rendering a scene to an offscreen buffer, known as the back buffer, before
quickly displaying it.

Which techniques are available is dependant on the board design; however,
this section discusses how the TVP4010 may be used to provide support for
four common types of double buffering, assuming that the framebuffer
memory and LUT-DAC have the necessary capabilities.

� BitBlt

� Full Screen

� Bitplane

For further details see section 4.12.6, 4.12.7 and 4.14 of this manual, and refer
to the relevant RAMDAC data sheet.

3.4.1 BitBlt Double Buffering

BLT double buffering in its simplest form requires a complete duplicate buffer
of non-displayed display RAM to be maintained. To swap buffers, a BLT is
performed to the displayable area. The features are:
� takes significant time to swap buffers
� the offscreen buffer requires as much RAM as the displayed buffer
� any number of windows can be independently double buffered
� pixel depth is limited only by the amount of available RAM.

The BLT can be performed using the texture units to allow arbitrary scaling and
filtering of data.

3.4.2 Full Screen Double Buffering

This section describes how to implement full-screen double buffering with the
TVP4010 when using the video timing generator. To perform full-screen
double buffering, the available display RAM must be partitioned into two parts:
buffer 0 and buffer 1, each of which contains enough memory to display a full
screen of pixel information. The partitioning consists of deciding the offset into
RAM at which a given buffer starts. This offset is used to program various the
TVP4010 registers. For a given resolution and pixel depth there must be
enough RAM configured on the display adapter for this to be possible. For
example, with 32-bit deep pixels and 4MB of RAM it is possible to implement
full-screen double buffering at 800x600 resolution, but not at 1024x768.

Double Buffering

3-13Memory I/O and Organization

There are two factors to consider for full-screen double buffering. Firstly, the
video output hardware must be configured to display the pixels from the
correct buffer. Secondly, the TVP4010 chip must be programmed to render
into the correct buffer. To achieve smooth animations, the buffer being
rendered into is usually different from the buffer being displayed.

3.4.2.1 Video Output

To display a given buffer, the video output hardware must be programmed with
the offset of that buffer in RAM. In the TVP4010 internal timing generator, this
is controlled by the ScreenBase register located in the TVP4010 control space
at offset 0x3000. It is updated immediately when it is written, but it is not used
by the video hardware until the start of the next frame.

3.4.2.2 TVP4010 Rendering

The video output hardware, restricts the position of each buffer to be on a RAS
boundary. When determining the memory location of a pixel being rendered,
the TVP4010 operates in screen coordinates.

To simplify the calculation of pixel coordinates that are loaded into the
TVP4010, this value may be loaded into the FBPixelOffset register. The last
thing the TVP4010 does before passing a pixel address to the framebuffer
interface is to add the value in the FBPixelOffset register to its address. Thus
it is possible to move the rendering origin to any pixel location in memory.
When swapping buffers it is normal to move this position to be the pixel at
which a given buffer starts.

These values can be pre-calculated at system start-up ready to be loaded as
required.

3.4.2.3 Synchronization

Double buffering allows the displaying of one buffer (the front buffer) while
rendering into the other (the back buffer). When the rendering has been
completed to the back buffer, the buffers are swapped and rendering continues
into the new back buffer. As a general rule, buffers should not be swapped until
all rendering to the back buffer is completed so that the buffer swap does not
result in visible tearing or screen break-up.

The TVP4010 reads the ScreenBase register at the end of each vertical
blanking period to determine the starting pixel for the next frame to be
displayed. Thus, in principle, this register can be written at any time to swap
buffers and will only take effect on the next frame. The same is not true of
loading the FBPixelOffset register. This register gets updated as soon as the
command to load works its way through the input FIFO. Hence, any rendering

Double Buffering

 3-14

that takes place after the FBPixelOffset has been loaded occurs in the new
buffer. If care is not taken, this can result in rendering being seen before the
buffers have been swapped. The following scheme will probably produce
picture break-up:

ScreenBase = Buf0_Addr // display buffer 0

FBPixelOffset = Buf1_Offset // draw to buffer 1 now

Render Commands // draw next frame

ScreenBase = Buf1_Addr // display buffer 1

FBPixelOffset = 0 // draw to buffer 0 now

Render Commands // draw next frame

There are two problems here. Firstly, even though the write to the ScreenBase
register happens immediately, the TVP4010 does not actually swap the
buffers until the end of the next vertical blanking period. Thus the start of
rendering of the next frame may be seen in the front buffer prior to the buffer
swap. Secondly, once a command has been loaded into the input FIFO the
host is free to continue with other work, while the TVP4010 executes the
command. Accesses to the ScreenBase register bypass the FIFO so it is
possible for the host to update it, and for the buffer swap to happen, before the
TVP4010 has completed rendering the last frame.

The TVP4010 includes the SuspendUntilFrameBlank command to solve
these problems without the need for the host synchronizing with the TVP4010.
Here is the preferred version of the above example:

SuspendUntilFrameBlank(parameters) // display buffer 0

FBPixelOffset = Buf1_Offset // draw to buffer 1 now

Render Commands // draw next frame

SuspendUntilFrameBlank(parameters) // display buffer 1

FBPixelOffset = 0 // draw to buffer 0 now

Render Commands // draw next frame

The SuspendUntilFrameBlank command flushes all outstanding reads and
writes to the framebuffer, and prevents any further framebuffer memory
accesses until after the buffers have been swapped.

The data that is loaded into the SuspendUntilFrameBlank command enables
the TVP4010 to swap the buffers automatically when the VBLANK occurs by
loading a new buffer offset into the ScreenBase register as discussed
previously. See the detailed description in the Appendix A, register reference.

Thus, a single command register access ensures that:
� all rendering has completed to the back buffer
� the chip will wait for VBLANK before carrying out the swap
� the host can continue sending rendering commands to the TVP4010

without the risk of them affecting the displayed buffer.

Double Buffering

3-15Memory I/O and Organization

As a general performance note, it is best to send non-framebuffer related
commands to the TVP4010 following the SuspendUntilFrameBlank
command. For example, any commands to clear the depth buffer between
frames should be sent as these will not affect the framebuffer and will be
executed while the TVP4010 waits for the VBLANK. This allows better overlap
between the host and the TVP4010. In general, any commands that will not
cause rendering to the framebuffer to occur can be queued in the TVP4010
FIFO before waiting on VBLANK.

Eventually more framebuffer rendering commands are sent by the host, and
the TVP4010 stalls its hyperpipeline until the buffer swap completes. Ideally
the host should use this time to perform non-rendering operations, for
example, to prepare additional DMA buffers

Using this scheme the host will not normally need to wait for VBLANK, unless
it is making framebuffer memory accesses through the bypass.

To wait for VBLANK, the LineCount register can be polled. There is also a
VBLANK interrupt available (see the TVP4010 Data Manual for details). The
LineCount register is reset at the start of the VBLANK period and is
incremented by one for each scanline as the video scanner moves down the
screen. Thus, polling for this register to have a value of less than the value held
in the VbEnd register indicates that the TVP4010 is in the VBLANK period.

3.4.3 Bitplane Double Buffering

Bitplane double buffering is of use at 32 bits per pixel framebuffer depth using
32768 colors in 5:5:5:1 true-color mode. It relies on the board being designed
with a RAMDAC which will select between the high and low 16 bits of its input
stream based on whether bit 31 is set or clear. Effectively the front and back
buffer for each pixel become interleaved within the same 32-bit word in the
framebuffer, i.e. buffer 0 becomes the lower 16 bits and buffer 1 becomes the
upper 16 bits.

The buffer swap is thus implemented as a block fill of bit 31 of the interior of
a window with either one or zero. While this is not as quick as full screen double
buffering which just requires a single register ScreenBase to be updated, it is
many times quicker than BitBlt double buffering, and like the BitBlt case allows
any number of windows to be hardware double buffered simultaneously.

Note that when rendering GUI data (such as window borders, titles etc.) bit 31
must always be set to the same value so that these pixels are always displayed
from the same buffer. The hardware writemask can then be used to write to
only the high, or only the low, 16 bits when rendering the animating contents
of a window.

Double Buffering

 3-16

The features are:
� “almost instantaneous” buffer swap
� no offscreen buffer required (e.g., 1152x900 would be the maximum

resolution on a 4MB framebuffer at 32bpp depth)
� multiple windows can be double buffered. GUI can write with no

performance penalty.
� Only useful at 5:5:5:1 RGB color depth.
� No triple buffering or other advanced buffer operations

In order to allow the Microsoft Windows 95 DIB engine to render direct to the
framebuffer in the 5:5:5:1 format, a special framebuffer bypass option is
supported which presents the front and back buffers uninterleaved, i.e. as a
5:5:5:1 16bpp packed framebuffer. This allows rarely used complex primitives
to be rendered by software.

3.4.4 Panning

Display panning can be achieved by setting the ScreenBase and ScreenStride
registers appropriately. The ScreenBase register defines where in the frame-
buffer the image is to start. For panning to work, the image in the framebuffer
must be larger than that to be displayed. The ScreenStride holds this
difference in terms of 64-bit units per scanline. For example, with a screen
width of 640 pixels and a framebuffer image width of 660, 32-bit pixels, the
ScreenStride needs to be set to 10.

An effective ScreenStride of 32 bits can be achieved by the additional use of
the HgEnd register. Appropriate setting of this register allows selection
between odd and even 32 bits.

To achieve a finer granularity of panning than 32 bits (four 8 bit pixels, two 16
bit pixels etc) a RAMDAC with additional panning features is required.

Texture Buffer

3-17Memory I/O and Organization

3.5 Texture Buffer

The texture buffer is very similar to the framebuffer. Textures are stored in the
formats the framebuffer supports, and loaded into memory through the Frame-
buffer Write unit. If the texture format is different from the framebuffer format,
the DitherMode register should be temporarily set to the texture format during
texture loads. Textures are read through the Texture Read unit.

If the texture is already in the correct format, a fast texture load can be used.
This is done by writing raw texture data to the TextureData register. Raw data
is 32 bits wide, with the correct bit pattern to be stored in memory. No data
formatting or packing is done, so the texture must be pre-processed if this is
required. The texture is stored linearly in memory from the address specified
in TextureDownLoadOffset which is automatically incremented; no patching is
done, so if the texture is to be patched it must be done by the host. This method
avoids setting up the Rasterizer and changing the state of the pipeline.

3.5.1 Texture Buffer Coordinates

Texture coordinates are formed by the Texture Address unit and passed to the
Texture Read unit. In place of the Rasterizer’s X and Y coordinate system, the
Texture Address unit generates S and T values.

The actual equations used to calculate the texture buffer address are:

Bottom left origin

Texture address = TextureBaseAddress - T * W + S

Top left origin

Texture address = TextureBaseAddress + T * W + S

where:

S is the texel’s S coordinate,

T is the texel’s T coordinate,

TextureBaseAd-
dress

holds the base address in the framebuffer of the current window.

W is the texture map width. Only a subset of widths are supported
and these are encoded into the PP0, PP1 and PP2 fields in the
TextureReadMode register. See the table in Appendix C for more
details.

These address calculations translate a 2D address into a linear address so
non power of two texture widths (e.g. 640) are economical in memory. Note
that the width of the texture map used for these calculations is independent of
the width and height used for texture effects such as repeat or clamp. The

Texture Buffer

 3-18

address is in texels; the physical byte address is calculated by multiplying the
texel address by the number of bytes in the texel.

3.5.2 Texture Color Formats

Texture maps have the same choice of formats as the framebuffer plus YUV
and 4 bit Color Index formats (see section 3.3.2 for details). The formats of the
texture map and framebuffer do not have to be the same.

4-1

Graphics Programming

The TVP4010 provides a rich variety of operations for 2D and 3D graphics
supported by its Hyperpipelined architecture. Section 4.1 shows the units in
the HyperPipeline, section 4.2 shows how to render a simple graphic primitive,
and sections 4.3 to 4.15 describe each unit.

Topic Page

4.1 The Graphics HyperPipeline 4-2.

4.2 A Gouraud Shaded Triangle 4-4.

4.3 Rasterizer Unit 4-11.

4.4 Scissor/Stipple Unit 4-32.

4.5 Localbuffer Read and Write Units 4-37.

4.6 Stencil/Depth Test Unit 4-42.

4.7 Texture Address Unit 4-49.

4.8 Texture Read Unit 4-53.

4.9 YUV Unit 4-58.

4.10 Framebuffer Read and Write Units 4-60.

4.11 Color DDA Unit 4-68.

4.12 Texture/Fog/Blend 4-72.

4.13 Color Format Unit 4-81

4.14 Logical Op Unit 4-84.

4.15 Host Out Unit 4-88.

Chapter 4

The Graphics HyperPipeline

 4-2

4.1 The Graphics HyperPipeline

The Graphics Hyperpipeline, or Graphics Processor, supports:

� Point, Line, Triangle and Bitmap primitives

� Flat and Gouraud shading

� Texture Mapping, Fog and Alpha blending

� Scissor and Stipple

� Stencil test, Depth (Z) buffer test

� Dithering

� Logical Operations

The units in the HyperPipeline are:

� Rasterizer scan converts the primitive into a series of fragments.

� Scissor/Stipple tests fragments against a scissor rectangle and a stipple
pattern.

� Localbuffer Read loads localbuffer data for use in the Stencil/Depth unit.

� Stencil/Depth performs stencil and depth tests.

� Texture Address generates addresses of texels for use in the Texture
Read unit.

� Texture Read accesses texture values for use in the texture application
unit.

� YUV converts YUV to RGB and applies chroma test.

� Localbuffer Write stores localbuffer data to memory.

� Framebuffer Read loads data from the framebuffer.

� Color DDA generates color information.

� Texture/Fog/Blend modifies color.

� Color Format converts the color to the external format.

� Logic Ops performs logical operations.

� Framebuffer Write stores the color to memory.

� Host Out returns data to the host.

The Graphics HyperPipeline

4-3Graphics Programming

Figure 4–1. Hyperpipeline

Rasterizer
Scissor/

Stipple

Localbuffer

Read

Stencil/

Depth

Texture

Address

Color DDA
Framebuffer

Read

Localbuffer

Write
YUV Texture

Read

Texture/

Fog/

Blend

Color Format Logic Ops
Framebuffer

Write
Host Out

The order of the Hyperpipeline shows the order in which operations are
performed. The Scissor/Stipple unit is before the texture address generator,
so any fragments that fail a stipple test will not cause a texture access. This
makes best use of the processing capacity of the pipeline. An awareness of
the pipeline is important when programming the TVP4010; all units in the
pipeline can be thought of as independent. For example, enabling the XOR
logic op will not automatically enable reading from the framebuffer; this must
be done explicitly.

A Gouraud Shaded Triangle

 4-4

4.2 A Gouraud Shaded Triangle

In this section we show how to render a typical 3D graphics primitive, the
Gouraud shaded, depth buffered triangle using the TVP4010. For this
example, assume the coordinate origin is bottom left of the window and
drawing will be from top to bottom. The TVP4010 can draw from top to bottom
or bottom to top.

Consider a triangle with vertices, v1, v2 and v3 where each vertex comprises
X, Y and Z coordinates, shown below. Each vertex has a different color made
up of red, green and blue (R, G and B) components.

Figure 4–2. Example Triangle

(X 1, Y1, Z 1 R1, G 1, B 1)

(X 2, Y2, Z 2 R2, G 2, B 2)

top half

lower half

v2

v3

(X 3, Y3, Z 3 R3 , G 3 , B3)

v1

The diagram makes a distinction between top and bottom halves because the
TVP4010 is designed to rasterize screen aligned trapezoids and flat-topped
or bottomed triangles as shown below:

Figure 4–3. Screen aligned trapezoid and flat topped triangle

4.2.1 Initialization

The TVP4010 requires many of its registers to be initialized in a particular way,
regardless of what is to be drawn; for instance, the screen size and appropriate

A Gouraud Shaded Triangle

4-5Graphics Programming

clipping must be set up. Normally this only needs to be done once and for
clarity this example assumes that all initialization has already been done. For
more details on initialization, see Chapter 5.

Other state will change occasionally, though not usually on a per primitive
basis, for instance enabling Gouraud shading and depth buffering. A detailed
treatment is given later in this chapter; details are not included here.

4.2.2 Dominant and Subordinate Sides of a Triangle

The dominant side of a triangle is that side with the greatest range of Y values.
The choice of dominant side is optional when the triangle is either flat bottomed
or flat topped.

The TVP4010 always draws triangles starting from the dominant edge towards
the subordinate edges. This simplifies the calculation of setup parameters as
described in the following paragraphs.

Figure 4–4. Dominant and Subordinate Sides of a Triangle

Dominant

Side

Subordinate

Sides

Dominant

Side

Subordinate

Side

Subordinate

Side

4.2.3 Calculating Color values for Interpolation

To draw from left to right and top to bottom, the color gradients (or deltas)
required are:

dRdy
R R

Y Y13
3 1

3 1
=

±
±

dGdy13=
G3± G1
Y3± Y1

dBdy13=
B3±B1
Y3±Y1

And from the plane equation:

dRdx = {(R1–R3) ∋
(Y2– Y3)

a
} – {(R2–R3) ∋

(Y1– Y3)

a
}

dGdx = { (G1–G3) ∋
(Y2– Y3)

a
} – { (G2–G3) ∋

(Y1– Y3)

a
}

A Gouraud Shaded Triangle

 4-6

dBdx = { (B1–B3) ∋
(Y2–Y3)

a
} – {(B2–B3) ∋

(Y1–Y3)

a
}

where:

a = ABS({(X1– X3) ∋ (Y2–Y3)} –{(X2– X3) ∋ (Y1–Y3)})

These values allow the color of each fragment in the triangle to be determined
by linear interpolation. For example, the red component color value of a
fragment at Xn,Ym could be calculated by:

adding dRdy13, for each scanline between Y1 and Yn, to R1.

then, adding dRdx for each fragment along scanline Yn from the left edge
to Xn.

The example chosen has the knee, i.e., vertex 2, on the right hand side, and
drawing is from left to right. If the knee were on the left side (or drawing was
from right to left), then the Y deltas for both the subordinate sides would be
needed to interpolate the start values for each color component (and the depth
value) on each scanline. For this reason, the TVP4010 always draws triangles
starting from the dominant edge towards the subordinate edges. For the
example triangle, this means left to right.

4.2.4 Register Set Up for Color Interpolation

For the example triangle the TVP4010 registers must be set as follows. Details
of register formats are given later.

// Load the color start and delta values to draw

// a triangle

RStart (R1)

GStart (G1)

BStart (B1)

dRdyDom (dRdy13) // To walk up the dominant edge

dGdyDom (dGdy13)

dBdyDom (dBdy13)

dRdx (dRdx) // To walk along the scanline

dGdx (dGdx)

dBdx (dBdx)

4.2.5 Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or deltas)
required for interpolation are:

A Gouraud Shaded Triangle

4-7Graphics Programming

dZdy13 =
Z3– Z1
Y3– Y1

And from the plane equation:

dZdx = {(Z1– Z3) ∋
(Y2–Y3)

a
} – {(Z2–Z3) ∋

(Y1 –Y3)

a
}

where

a = ABS ({ (X1–X3)∋ (Y2–Y3)} –{(X2– X3) ∋ (Y1–Y3) })

The divisor, shown here as a, is the same as for color gradient values. The two
deltas, dZdy13 and dZdx allow the Z value of each fragment in the triangle to
be determined by linear interpolation as described for the color interpolation
above.

4.2.6 Register Set Up for Depth Testing

Internally the TVP4010 uses fixed-point arithmetic. The formats for each
register are described later. Each depth value must be converted into a
2s-complement fixed-point number and then loaded into the appropriate pair
of registers. The Upper or U registers store the integer portion, while the Lower
or L registers store the fractional bits, left justified and zero filled.

For the example triangle, the TVP4010 needs its registers set up as follows:

// Load the depth start and delta values

// to draw a triangle

ZStartU (Z1_MS)

ZStartL (Z1_LS)

dZdyDomU (dZdy13_MS)

dZdyDomL (dZdy13_LS)

dZdxU (dZdx_MS)

dZdxL (dZdx_LS)

4.2.7 Calculating the Slopes for each Side

The TVP4010 draws filled shapes such as triangles as a series of spans with
one span per scanline. Therefore it needs to know the start and end X

A Gouraud Shaded Triangle

 4-8

coordinate of each span. These are determined by a process called edge
walking. This process involves adding one delta value to the previous span’s
start X coordinate and another delta value to the previous span’s end X
coordinate to determine the X coordinates of the new span. These delta values
are in effect the slopes of the triangle sides. To draw from left to right and top
to bottom, the slopes of the three sides are calculated as:

dX =
X – 1
Y3– Y1

13
X3 dX12=

X2– X1
Y2– Y1

dX23=
X3– X 2
Y3– Y2

This triangle will be drawn in two parts, top down to the knee i.e., vertex 2, and
then from there to the bottom. The dominant side is the left side, so for the top
half:

dXDom= dX13 dXSub = dX12

The start X,Y, the number of scanlines, and the above deltas give the TVP4010
enough information to edge walk the top half of the triangle. However, to
indicate that this is not a flat topped triangle (the TVP4010 is designed to
rasterize screen aligned trapezoids and flat topped triangles), the same start
position in terms of X must be given twice as StartXDom and StartXSub.

To edge walk the lower half of the triangle, selected additional information is
required. The slope of the dominant edge remains unchanged, but the
subordinate edge slope needs to be set to:

dXSub= dX23

Also the number of scanlines to be covered from Y2 to Y3 needs to be given.
Finally to avoid any rounding errors accumulated in edge walking to X2 (which
can lead to pixel errors), StartXSub must be set to X2.

4.2.8 Rasterizer Mode

The TVP4010 Rasterizer has a number of modes which remain effective from
the time they are set until they are modified and can thus affect many
primitives. In the case of the Gouraud shaded triangle, the default values for
these modes are suitable.

RasterizerMode (0) // Default Rasterizer mode

4.2.9 Subpixel Correction

The TVP4010 can perform subpixel correction of all interpolated values when
rendering aliased trapezoids. This correction ensures that any parameter

A Gouraud Shaded Triangle

4-9Graphics Programming

(color/depth/texture/fog) is correctly sampled at the center of a fragment. In
general, subpixel correction will always be enabled when rendering any
trapezoid which has interpolated parameters. Control of subpixel correction is
in the Render command register described in the following section, and is
selectable on a per primitive basis. It does not need to be enabled for any
primitive that does not use interpolation, including copy operations. If it is
disabled and interpolators are used, the values calculated for the primitive may
not be exactly correct; enabling sub-pixel correction may reduce the
performance of the chip, particularly for small primitives.

4.2.10 Rasterization

The TVP4010 is almost ready to draw the triangle. Setting up the registers as
described here and sending the Render command will cause the top half of the
example triangle to be drawn.

For drawing the example triangle, all the bit fields within the Render command
should be set to 0 except the PrimitiveType which should be set to trapezoid
and the SubPixelCorrectionEnable bit which should be set to TRUE.

// Draw triangle with knee

// Set deltas

StartXDom (X 1<<16) // Converted to 16.16 fixed point

dXDom (((X 3 – X 1)<<16)/(Y 3 – Y 1))

StartXSub (X 1<<16)

dXSub (((X 2 – X 1)<<16)/(Y 2 – Y 1))

StartY (Y 1<<16)

dY (–1<<16)

Count (Y 1 – Y 2)

// Set the render command mode

render.PrimitiveType = TVP4010_TRAPEZOID_PRIMITIVE

render.SubPixelCorrectionEnable = TRUE

// Draw the top half of the triangle

Render (render)

After the Render command has been issued, the registers in the TVP4010 can
immediately be altered to draw the lower half of the triangle. Note that only two
registers need be loaded and the command ContinueNewSub sent. Once the
TVP4010 has received ContinueNewSub, drawing of this sub-triangle will
begin.

// Set–up the delta and start for the new edge

A Gouraud Shaded Triangle

 4-10

StartXSub (X 2<<16)

dXSub (((X 3 – X 2)<<16)/(Y 3 – Y 2))

// Draw sub–triangle

ContinueNewSub (Y 2 – Y 3) // Draw lower half

Rasterizer Unit

4-11Graphics Programming

4.3 Rasterizer Unit

The Rasterizer decomposes a given primitive into a series of fragments for
processing by the rest of the HyperPipeline.

The TVP4010 can directly rasterize:

� aliased screen aligned trapezoids

� aliased single pixel wide lines

� aliased single pixel points

All other primitives are treated as one or more of the above.

4.3.1 Trapezoids

The TVP4010 basic area primitive is the screen aligned trapezoid. This is
characterized by having top and bottom edges parallel to the X axis. The side
edges may be vertical (a rectangle), but in general will be diagonal. The top
or bottom edges can degenerate into points in which case we are left with
either flat topped or flat bottomed triangles. Any polygon can be decomposed
into screen aligned trapezoids or triangles. Usually, polygons are decomposed
into triangles because the interpolation of values over non-triangular polygons
is ill defined. The Rasterizer does handle flat topped and flat bottomed ’bow
tie’ polygons which are a special case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine which fragments are
to be drawn is known as edge walking. Suppose the aliased triangle shown in
Figure 4–5 is to be rendered from top to bottom and the origin is bottom left
of the window. Starting at (X1, Y1) then decrementing Y and using the slope
equations for edges 1–2 and 1–3, the intersection of each edge on each
scanline can be calculated. This results in a span of fragments per scanline
for the top trapezoid. The same method can be used for the bottom trapezoid
using slopes 2–3 and 1–3.

It is usually required that adjacent triangles or polygons which share an edge
or vertex be drawn such that pixels which make up the edge or vertex get
drawn only once. This may be achieved by omitting the pixels down the left or
the right sides and the pixels along the top or lower sides. The TVP4010 has
adopted the convention of omitting the pixels down the right hand edge.
Control over whether the pixels along the top or lower sides are omitted
depends on the start Y value and the number of scanlines to be covered. With
the example, if StartY = Y1 and the number of scanlines is set to Y1–Y2, the
lower edge of the top half of the triangle will be excluded. This excluded edge
will get drawn as part of the lower half of the triangle.

Rasterizer Unit

 4-12

To minimize delta calculations, triangles may be scan converted from left to
right or from right to left. The direction depends on the dominant edge, that is
the edge which has the maximum range of Y values. Rendering always
proceeds from the dominant edge towards the relevant subordinate edge. In
the example above, the dominant edge is 1–3 so rendering will be from right
to left.

Figure 4–5. Rasterizing a triangle.
Subordinate Edge 1–2

Knee
dXSub 1–2

Subordinate Edge 2–3

dXSub 2–3

Dominant Edge 1–3

dXDom

(X1, Y1)

(X2, Y2)

Top

Trapezoid

Bottom
Trapezoid

The sequence of actions required to render a triangle (with a knee) are:

� Load the edge parameters and derivatives for the dominant edge
and the first subordinate edges in the first triangle.

� Send the Render command. This starts the scan conversion of
the first triangle, working from the dominant edge. This means
that for triangles where the knee is on the left we are scanning
right to left, and vice versa for triangles where the knee is on the
right.

� Load the edge parameters and derivatives for the remaining
subordinate edge in the second triangle.

� Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

Pseudocode for the above example is:

// Set the Rasterizer mode to the default,

// see section 4.3.10

Rasterizer Unit

4-13Graphics Programming

RasterizerMode (0)

// Set–up the start values and the deltas.

// Note that the X and Y coordinates are converted to

// 16.16 format

StartXDom (X1<<16)

dXDom (((X3– X1)<<16)/(Y3 – Y1))

StartXSub (X1<<16)

dXSub (((X2– X1)<<16)/(Y2 – Y1))

StartY (Y1<<16)

dY (–1<<16) // Down the screen

Count (Y1 – Y2)

// Set the render mode to aliased primitive with

// subpixel correction. See 4.3.6

render.PrimitiveType = TVP4010_TRAPEZOID_PRIMITIVE

render.SubpixelCorrectionEnable = TVP4010_TRUE

// Draw top half of the triangle

Render (render)

// Set the start and delta for the second half of the

// triangle.

StartXSub (X2<<16)

dXSub (((X3– X2)<<16)/(Y3 – Y2))

// Draw lower half of triangle

ContinueNewSub (abs(Y2 – Y3))

After the Render command has been sent, the registers in the TVP4010 can
be altered immediately to draw the second half of the triangle. To do this, note
that only two registers need to be loaded and the command ContinueNewSub
to be sent. Once drawing of the first triangle is complete and the TVP4010 has
received the ContinueNewSub command, drawing of this sub-triangle starts.
The ContinueNewSub command register is loaded with the remaining number
of scanlines to be rendered.

A Continue command can be used instead of the ContinueNewSub command
in certain situations where it is beneficial to avoid reloading the Rasterizer’s
edge Digital Differential Analyzers (DDAs). However, accumulation of
rasterization errors can occur which may result in imprecise rendering.

The ContinueNewDom command can be used to draw complex 2D shapes as
a series of trapezoids. Since this command only affects the Rasterizer DDA
and not any other unit, it is not suitable for 3D operations.

Rasterizer Unit

 4-14

4.3.2 Lines

Single pixel wide aliased lines are drawn using a DDA algorithm, so all that the
TVP4010 needs by way of input data is StartX, StartY, dX, dY and length. The
algorithm calculates:

while (length––)

{

X = X + dx

Y = Y + dy

plot ((int)X, (int)Y)

}

Consider rendering a two segment polyline (see Figure 4–6) from (X1, Y1) to
(X2, Y2) to (X3, Y3)

Both segments are X major so:

abs (Xn+1 – Xn) > abs (Yn+1– Yn)

The pseudocode to render this line is shown below.

Figure 4–6. Polyline

(X2, Y2)

(X1, Y1) (X3, Y3)

// Set the Rasterizer mode to the default,

// see section 4.3.10

RasterizerMode (0)

// Load the delta values for the first segment.

StartXDom (X 1<<16)

dXDom (1.0<<16)

StartY (Y 1<<16)

dY (((Y 2– Y 1)<<16)/(X 2 – X 1))

Count (abs (X 2 – X 1))

// Set the render mode

render.PrimitiveType = TVP4010_LINE_PRIMITIVE

// Start rendering

Render (render)

// The first segment is complete, load delta

Rasterizer Unit

4-15Graphics Programming

// for the second

dXDom (1.0<<16)

dY (((Y 3– Y 2)<<16)/(X 3 – X 2))

// Continue with the second segment

ContinueNewLine (abs (X 3 – X 2))

Note that the mechanism to render the second segment with the Continue-
NewLine command is analogous to the ContinueNewSub command used at
the knee of a triangle. Care must be taken when a continue command is being
used for lines. Incorrect rendering can occur with operations such as alpha
blending and logical ops if a segment draws back over the previous line seg-
ment thus attempting to reuse pixels that have just been updated. The solution
is to send a Sync prior to the ContinueNewLine. This will ensure pending writes
are flushed before the framebuffer reads the new line segment. Note that there
is no need to poll for the Sync here; the act of loading this command register
is sufficient.

When a Continue command is used rather than a ContinueNewLine, some
error will be propagated along the line so this is rarely used for lines. To
minimize these errors, a choice of actions are available as to how the DDA
units are restarted on the receipt of a ContinueNewLine command, see
subsection 4.3.10.

It is recommended that for OpenGL rendering, the ContinueNewLine
command is not used and individual segments are rendered.

4.3.3 Points

The TVP4010 supports a single pixel aliased point primitive. For points larger
than one pixel trapezoids should be used. The fields in the Render command
register are described in detail later; however, in this case the PrimitiveType
field in the Render command should be set to equal the
TVP4010_POINT_PRIMITIVE. The pseudocode portion to render an aliased
unity sized point is:

// Set the Rasterizer mode to the default,

// See section 4.3.10

RasterizerMode (0)

// Set–up the start values and the deltas.

// Note that the X and Y coordinates are converted to

// 16.16 format

StartXDom (X<<16)

Rasterizer Unit

 4-16

StartY (Y<<16)

// Set–up the render command.

render.PrimitiveType = TVP4010_POINT_PRIMITIVE

// Render the point

Render (render)

4.3.4 Spans

Shapes more complex than points, lines or trapezoids may be drawn as a
series of spans. Each span may be drawn as a horizontal line or as a single
pixel high trapezoid. Both are special cases of subsections 4.3.2 and 4.3.3 in
that the loading of certain registers may be omitted e.g., dXDom, dXSub and
dY. However, trapezoids can optionally use block writes for constant color
spans and so may be preferable.

4.3.5 Block Write Operation

The TVP4010 supports SGRAM block writes with block sizes of 32 pixels. Any
screen aligned trapezoid can be filled using block writes, not just rectangles.
The SGRAM hardware writemasks can be used in conjunction with block
writes.

The use of block writes is enabled by setting the FastFillEnable field in the
Render command register.

Note only the Rasterizer and Framebuffer Write units are involved in block
filling. The other units will ignore block write fragments, so it is not necessary
to disable them.

4.3.6 Sub Pixel Precision and Correction

As the Rasterizer has fractional precision of 14 bits in Y and 15 bits in X, and
the maximum screen width is 1536 pixels wide a number of bits, called
subpixel precision bits, are available. The extra bits are required for a number
of reasons:

� when using an accumulation buffer (where scans are rendered
multiple times with jittered input vertices)

� for correct interpolation of parameters to give high quality shading as
described below

The TVP4010 supports subpixel correction of interpolated values when
rendering trapezoids. Subpixel correction ensures that all interpolated

Rasterizer Unit

4-17Graphics Programming

parameters associated with a fragment (color, depth, fog, texture) are correctly
sampled at the fragment’s center. This correction is required to ensure
consistent shading of objects made from many primitives. It should generally
be enabled for all rendering which uses interpolated parameters.

4.3.7 Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros which control which
fragments are generated by the Rasterizer. Only fragments where the
corresponding Bitmap bit is set are submitted for drawing. The normal use for
this is in drawing characters, although the mechanism is available for all
primitives. The Bitmap data is packed contiguously into 32-bit words so that
rows are packed adjacent to each other. Bits in the mask word are by default
used from the least significant end towards the most significant end and are
applied to pixels in the order they are generated in. The relationship between
bits in the mask and the scanning order is shown in Figure 4–7.

Instead of rejecting fragments which fail the bitmask, they may be set to the
background color. This is controlled by the RasterizerMode register. The
background color comes from the Texel0 register, which may be static or
dynamically loaded through the Texture Read unit.

The Rasterizer scans through the bits in each word of the Bitmap data and
increments the X,Y coordinates to trace out the rectangle of the given width
and height. By default, any set bits (1) in the Bitmap cause a fragment to be
generated, any reset bits (0) cause the fragment to be rejected.

Figure 4–7. Relationship between Bitmask and Scanning Directions

0 1 2 3

4 5 6 7

C D E F

8 9 A B

0 1 2 3

4 5 6 7

C D E F

8 9 A B

0123

4567

CDEF

89AB

0123

4567

CDEF

89AB

01234567CDEF 89AB

The selection of bits from the BitMaskPattern register can be mirrored, that is,
the pattern is traversed from MSB to LSB rather than LSB to MSB. Also, the
sense of the test can be reversed such that a set bit causes a fragment to be
rejected and vice versa. This control is found in the RasterizerMode register,
described in subsection 4.3.10.

Rasterizer Unit

 4-18

When one Bitmap word has been exhausted and pixels in the rectangle still
remain then rasterization is suspended until the next write to the
BitMaskPattern register, or the bitmask can be reused. If the bitmask is still
valid when a new line is started it can continue to the next line or be discarded
and a new one started; the start position of the mask can be specified to allow
the first bits to be ignored. It is also possible to index into the mask using the
X position of the Rasterizer. This allows 32-bit wide window aligned bit pattern;
used with a new mask for every scanline a 32 x 32 stipple pattern can be
supported.

For example a five-pixel wide, eight-pixel high bitmap requires a register set
up as follows:

// Set the Rasterizer mode to the default,

// see section 4.3.10

RasterizerMode (0)

// Set–up the start values and the deltas.

// Note that the X and Y coordinates are converted to

// 16.16 format

StartXDom (X<<16)

dXDom (0)

StartXSub ((X + 5)<<16) // Right hand edge pixels

 // get missed off.

StartY (Y<<16)

dY (1<<16)

Count (8)

// At least the following bits require setting for the

// Render command.

render.PrimitiveType = TVP4010_TRAPEZOID_PRIMITIVE

render.SyncOnBitMask = TVP4010_TRUE

render.ReuseBitMask = TVP4010_FALSE

// Issue render command. First fragment will be

// generated on receipt of the BitMaskPattern

Render (render)

// 8x5 pixel bitmap requires 40 bits, and so 2

// 32 bit words.

BitMaskPattern (patternWord0)

BitMaskPattern (patternWord1)

Rasterizer Unit

4-19Graphics Programming

Rendering starts as soon as the first patternWord is loaded into the BitMask-
Pattern register.

4.3.8 Block Writes and Bitmaps

The fastest way to render downloaded bitmap data, not requiring logical op
processing, is to use block fills. The Rasterizer is set up as normal, setting the
FastFillEnable bit. If it is also necessary to plot the background color then, the
operation should be repeated for the background color but with the InvertBit-
Mask bit set in the RasterizerMode register.

Since the downloaded bitmask data will be ANDed with masks generated by
the Rasterizer without any re-alignment being performed, it is up to the host
software to ensure that the masks match up. This can be achieved in two ways.
First, the host software can align the bits that it downloads to match the
alignment of the Rasterizer. A faster way is to use the User Scissor. This is the
recommended method. Note that this is a general algorithm. In the special
case where the data to be downloaded is already aligned to 32 bits on both the
left and right edges, the scissor need not be used.

For example, suppose that we want to download data to fill a rectangle with
left edge at 10 and right edge at 200. And further, assume that the host bitmap
data is to be loaded from an offset of 35 within the bitmap. Our goal is to match
the bit at offset 35 with the pixel at offset 10.

Since we want to do the least amount of work on the host by avoiding shifting
the data, we will actually download the host bitmap data at the previous 32-bit
boundary. This means that we must setup the TVP4010 to discard the first
three bits of data. We achieve this by rasterizing a rectangle whose left edge
is three pixels less than that required, in this case we would rasterize the left
edge to start at pixel 7. This causes the source bitmap data to be correctly
aligned with the mask data produced by the Rasterizer. But, in order to protect
the three pixels that we would otherwise overwrite, we use the scissor clip and
set its bounds to be those of the original rectangle.

When using a block write operation like this, the Rasterizer will wait for new
bitmask data to be downloaded at the start of each scanline. So we do not have
to perform the alignment operation on the right hand edge.

A similar algorithm can be used to implement fast text rendering. For example,
for fonts where each line fits into 32 bits, each line of a glyph can be down-
loaded as a mask.

Block writes can be used in combination with bitmasks with InvertBitMask and/
or MirrorBitMask options but not BitMaskOffset or BitMaskPacking.

Rasterizer Unit

 4-20

4.3.9 Copy/Upload/Download

The TVP4010 supports three pixel-rectangle operations: copy, upload and
download. These can apply to all buffer types.

Typically, a the TVP4010 copy moves raw blocks of data around buffers. To
zoom or re-format data, either external software must upload the data, process
it and then download it again, or the texture part of the Texture/Fog/Blend unit
should be used.

To copy a rectangular area, the Rasterizer would be configured to render the
destination rectangle, thus generating fragments for the area to be copied. The
TVP4010 copy works by adding a linear offset to the destination fragment
address to find the source fragment address. The calculation of the offset
value is as shown in Figure 4–8.

Note that the offset is independent of the origin of the buffer or window, as it
is added to the destination address. Care must be taken when the source and
destination overlap to choose the source scanning direction so that the over-
lapping area is not overwritten before it has been moved. This may be done
by swapping the values written to the StartXDom and StartXSub, or by
changing the sign of dY and setting StartY to be the opposite side of the
rectangle.

Figure 4–8. TVP4010 Copy Operation

Screen Width

X Offset

Y Offset

Offset

Offset = Y Offset * Screen Width + X Offset

Source
Rectangle

Destination
Rectangle

Rasterizer Unit

4-21Graphics Programming

The TVP4010 buffer upload/downloads are very similar to copies in that the
region of interest is generated in the Rasterizer. However, the localbuffer and
framebuffer are generally configured to read or to write only, rather than both
read and write. The host out unit should be set to output data to the FIFO for
image uploads. For downloads, the Rasterizer should be set to sync on the
appropriate data type. This means that the Rasterizer will not generate the
next fragment address until data is supplied from the host processor.

Units which can generate fragment values, the Color DDA unit for example,
should generally be disabled for any copy/upload/download operations.

Warning: During image upload, all the returned fragments must be read from the Host Out FIFO,
otherwise the TVP4010 pipeline will stall. In addition it is strongly recommended that any units
which can discard fragments (for instance the following tests: bitmask, user scissor, screen
scissor, stipple, depth, stencil), are disabled otherwise a shortfall in pixels returned may occur,
also leading to deadlock.

Note that because the area of interest in copy/upload/download operations is
defined by the Rasterizer, it is not limited to rectangular regions.

Color formatting can be used when performing image copies, uploads and
downloads. This allows data to be formatted from, or to any of the supported
the TVP4010 color formats; subsection 4.12.6 fully describes this operation.

4.3.10 Rasterizer Mode

A number of long-term modes can be set using the RasterizerMode register,
these are:

� Mirror BitMask: This is a single bit flag which specifies the direction that
bits are checked in the BitMaskPattern register. If the bit is reset, the
direction is from least significant to most significant (bit 0 to bit 31), if the
bit is set, it is from most significant to least significant (from bit 31 to bit 0).

� Invert BitMask: This is a single bit which controls the sense of the
accept/reject test when using a Bitmask. If the bit is reset then when the
BitMask bit is set the fragment is accepted and when it is reset the
fragment is rejected. When the bit is set the sense of the test is reversed.

� Fraction Adjust: These two bits control the action taken by the Rasterizer
on receiving a ContinueNewLine command. As the TVP4010 uses a DDA
algorithm to render lines, an error accumulates in the DDA value. The
TVP4010 provides for greater control of the error by doing one of the
following:

� leaving the DDA running, which means errors will be propagated
along a line.

Rasterizer Unit

 4-22

� or setting the fraction bits to either zero, a half or almost a half
(0x7FFF).

� Bias Coordinates: Only the integer portion of the values in the DDAs are
used to generate fragment addresses. Often the actual action required is
a rounding of values. This can be achieved by setting the bias coordinate
bit to true which will automatically add almost a half (0x7FFF) to all input
coordinates.

� ForceBackgroundColor: When set, if a fragment fails the bitmask test it is
not discarded, but it is made to use the contents of the Texel0 register in
place of the normal color. This is used to provide foreground/background
color selection.

� BitMaskByteSwapMode. This controls how or whether the bitmask is byte
swapped as it is loaded. Four different byte orders are supported.

� BitMaskPacking. Controls whether a bitmask is discarded at the end of a
scanline or continued onto the next. Not supported for block writes.

� BitMaskOffset. Sets the position of the first bit in the bitmask to test. Not
supported for block writes.

� HostDataByteSwapMode. Controls byte swapping of host data being sent
to the chip. This applies to any operation using the SyncOnHostData in the
Render register. Four different byte orders are supported.

� LimitsEnable. When enabled, this allows quick rejection of fragments
outside the defined area.

� BitMaskRelative. If enabled, this specifies that the bitmask should be
accessed by an index made up of the lower 5 bits of the X coordinate of
the current fragment.

4.3.11 Synchronization

For most circumstances the TVP4010 automatically synchronizes between
primitives so that data for the first primitive is written before data for the second
primitive is read. This is handled by data type, so localbuffer reads and writes
are synchronized as are framebuffer reads and writes, but localbuffer reads
are not synchronized with framebuffer writes.

If a unit is used to modify data that is not its normal type, then it may be
necessary to explicitly synchronize the pipeline. If the Framebuffer Write unit
is used to clear the localbuffer with block fills then the pipeline must be
synchronized before localbuffer data is read. If the Framebuffer Write unit is

Rasterizer Unit

4-23Graphics Programming

used to download a texture map, the pipeline must be synchronized before the
Texture Read unit accesses the texture.

Explicit synchronization of the pipeline is done by the WaitForCompletion
command. This has no data field, and may be inserted into a stream of
commands; there is no need to wait for the TVP4010 to report that
synchronization has taken place.

Alternatively, synchronization must be done with the Sync command, but this
requires the host processor to poll the chip until it reports that the pipeline is
idle (see section 4.15, Host Out Unit).

4.3.12 X and Y limits clipping

The Rasterizer will normally rasterize all pixels on every scanline, generating
a fragment per pixel. If large numbers of scanlines are subsequently clipped
out by, for example, the scissor unit, then a lot of time can be wasted. The Y
limits register has been added to provide a way of quickly eliminating whole
scanlines for a given primitive. This register effectively provides a Y scissor clip
in the Rasterizer.

If limits testing has been enabled in the RasterizerMode register, and if a
scanline being rasterized falls outside the Y limits bounds, then the Rasterizer
will move directly onto the next scanline without rasterizing in X.

The Xlimits register has been added to avoid unnecessary rasterization, but
does not act as a true X scissor clip. This is to ensure correct interpolation of
color, fog etc. The limits registers are provided for efficiency reasons.

Both X and Y Limits clipping are automatically disabled when
SyncOnHostData or SyncOnBitMask is used.

4.3.13 Registers

Real coordinates with fractional parts are provided to the Rasterizer in 2s
complement fixed point. The point is kept consistent with a 16.16 format even
though some of the integer and fractional bits may not be significant. The
integer portion should be sign extended to fill unused bits; unused bits in the
fraction should be set to zero.

Figure 4–9. Real Coordinate Representation

08162431

Integer Portion Fractional Portion

Rasterizer Unit

 4-24

When reference is made to Signed-Fixed-Point Format, the sign bit is included
in the integer section. For example, a signed-fixed-point format of 12.15
implies 1 sign bit followed by 11 integer bits and 15 fraction bits.

Table 4–1. Rasterizer Command Registers

Register Name Data Field Description

Render See below Starts the rasterization process

ContinueNewDom 11 bit integer Allows the rasterization to continue with a new dominant
edge. The dominant edge DDA is reloaded with the new
parameters. The subordinate edge is carried on from the
previous trapezoid. This allows any convex polygon to be
broken down into a collection of trapezoids, with continuity
maintained across boundaries. Since this command only
affects the Rasterizer DDA and not that of any other units, it is
not suitable for 3D operations.
The data field holds the number of scanlines to fill. Note this
count does not get loaded into the Count register.

ContinueNewSub 11 bit integer Allows the rasterization to continue with a new subordinate
edge. The subordinate DDA is reloaded with the new
parameters. The dominant edge is carried on from the
previous trapezoid. This is useful when scan converting
triangles with a ’knee’ (i.e. two subordinate edges).
The data field holds the number of scanlines to fill. Note this
count does not get loaded into the Count register.

Continue 11 bit integer Allows the rasterization to continue after new delta value(s)
have been loaded, but does not cause either of the primitive’s
edge DDAs to be reloaded. This can result in the
accumulation of rasterization errors causing imprecise
rendering.
The data field holds the number of scanlines to fill. Note this
count does not get loaded into the Count register.

ContinueNewLine 11 bit integer Allows the rasterization to continue for the next segment in a
polyline. The XY position is carried on from the previous line,
however the fraction bits in the DDAs can be: kept, set to
zero, half, or nearly one half, under control of the Rasterizer-
Mode.
The data field holds the number of pixels in a line. Note this
count does not get loaded into the Count register.
The use of ContinueNewLine is not recommended for
OpenGL because the DDA units will start with a slight error as
compared with the value they would have been loaded with
for the second and subsequent segments.

Rasterizer Unit

4-25Graphics Programming

Table 4–1. Rasterizer Command Registers(Continued)

Register Name Data Field Description

WaitForCompletion Not used This is used to suspend the TVP4010 core until all
outstanding reads and writes in framebuffer memory units
have completed. This is intended to prevent a new primitive
from starting to be rasterized before the previous primitive is
completely finished. It would be used, for example, to
separate texture downloads from the surrounding primitives.
The same functionality can be achieved using the Sync
command and waiting for it in the Host Out FIFO. However,
using WaitForCompletion doesn’t involve the host and can be
inserted into a DMA buffer.

Rasterizer Unit

 4-26

Table 4–2. Rasterizer Control Registers

RasterizerMode See below Defines the long term mode of operation of the Rasterizer.

StartXDom Signed fixed point
12.15 format

Initial X value for the dominant edge in trapezoid filling, or initial
X value in line drawing.

dXDom Signed fixed point
12.15 format

Value added when moving from one scanline to the next for the
dominant edge in trapezoid filling.
Also holds the change in X when plotting lines so for Y major
lines this will be some fraction (dx/dy), otherwise it is normally ±
1.0, depending on the required scanning direction.

StartXSub Signed fixed point
12.15 format

Initial X value for the subordinate edge.

dXSub Signed fixed point
12.15 format

Value added when moving from one scanline to the next for the
subordinate edge in trapezoid filling.

StartY Signed fixed point
11.14 format

Initial scanline in trapezoid filling, or initial Y position for line
drawing.

dY Signed fixed point
11.14 format

Value added to Y to move from one scanline to the next. For X
major lines this will be some fraction (dy/dx), otherwise it is
normally ± 1.0, depending on the required scanning direction.

Count 11 bit integer Number of pixels in a line. Number of scanlines in a trapezoid.

XLimits Xmax: 2s comple-
ment 12 bit value in
the upper word.
Xmin: 2s comple-
ment 12 bit value in
the lower word.

Defines the X extents that the Rasterizer should fill between. A
span is rasterized if its X value satisfies:
Xmin £ X < Xmax

YLimits Ymax: 2s comple-
ment 12 bit value in
the upper word.
Ymin: 2s comple-
ment 12 bit value in
the lower word.

Defines the Y extents that the Rasterizer should fill between. A
scanline is filled if its Y value satisfies:
Ymin £ Y < Ymax

Rasterizer Unit

4-27Graphics Programming

For efficiency, the Render command register has a number of bit fields that can
be set or cleared per render operation, and which qualify other state
information within the TVP4010. These bits are AreaStippleEnable,
TextureEnable, FogEnable, ReuseBitMask and SubpixelCorrection.

One use of this feature can occur when a window is cleared to a background
color. For normal 3D primitives, stippling and fog operations may have been
enabled, but these are to be ignored for window clears. Say that initially the
FogMode and AreaStippleMode registers are enabled through the unit Enable
bits. Now bits need only be set or cleared within the Render command to
achieve the required result, removing the need to load the FogMode and
AreaStippleMode registers for every Render operation.

The bit fields of the Render command register are shown in Table 4–3:

Rasterizer Unit

 4-28

Table 4–3. Render Command Register Fields

Bit No. Name Description

0 AreaStippleEnable Enables area stippling of the fragments produced during rasterization.
The Stipple Unit must be enabled as well for stippling to occur. When
this bit is reset no area stippling occurs irrespective of the setting of
the area stipple enable bit in the Stipple Unit.

1,2 Reserved

3 FastFillEnable Causes fast block filling of primitives. When reset the normal
rasterization process occurs.

4, 5 Reserved

6, 7 PrimitiveType Selects the primitive type to rasterize:
0 = Line
1 = Trapezoid
2 = Point

8,9,10 Reserved

11 SyncOnBitMask Applies the bitmask test. If ReuseBitMask is disabled, the Rasterizer
will wait for a new mask when the current one expires. If any other
register is written while the rasterization is suspended, then the
rasterization operation is aborted. The register write which caused the
abort is then processed as normal.
The behavior is slightly different when the SyncOnHostData bit is set
to prevent a deadlock from occurring. In this case the rasterization
doesn’t suspend when all the bits have been used and if new
BitMaskPattern data words are not received in a timely manner then
the subsequent fragments will just reuse the bitmask.

12 SyncOnHostData When this bit is set a fragment is produced only when one of the
following registers has been written by the host: Depth, FBData,
FBSourceData, Stencil, Color or Texel0. If SyncOnBitMask is reset,
then if any register other than one of these six is written to, the
rasterization operation is aborted. If SyncOnBitMask is set then if any
register other than one of these six, or BitMaskPattern is written to, the
rasterization is aborted. The register write which caused the abort is
then processed as normal. Writing to the BitMaskPattern register
doesn’t cause any fragments to be generated.

13 TextureEnable Enables texturing of the fragments produced during rasterization.
Note that the texture units must also be enabled for any texturing to
occur.

14 FogEnable Enables fogging of the fragments produced during rasterization. Note
that the fog unit must be enabled as well for any fogging to occur.

15 Reserved

Rasterizer Unit

4-29Graphics Programming

Table 4–3. Render Command Register Fields(Continued)

Bit No. Name Description

16 SubPixelCorrection
Enable

Enables the sub pixel correction of the color, depth, fog and texture
values at the start of a scanline span. When this bit is reset no
correction is done at the start of a span. Sub pixel corrections are only
applied to aliased trapezoids.

17 ReuseBitMask Causes the Rasterizer to reuse the current bitmask when it expires if
SyncOnBitMask is enabled.

Rasterizer Unit

 4-30

Several long-term Rasterizer modes are stored in the RasterizerMode register
as shown in Table 4–4:

Table 4–4. Rasterizer Mode Register

Bit No. Name Description

0 MirrorBitMask When this bit is set the bitmask bits are consumed from the most
significant end towards the least significant end.
When this bit is reset the bitmask bits are consumed from the least
significant end towards the most significant end.

1 InvertBitMask When this bit is set the bitmask is inverted first before being tested.

2,3 FractionAdjust These bits are for the ContinueNewLine command and specify how
the fraction bits in the Y and XDom DDAs are adjusted:
0: No adjustment is done
1: Set the fraction bits to zero
2: Set the fraction bits to half
3: Set the fraction to nearly half, i.e. 0x7fff

4,5 BiasCoordinates These bits control how much is added onto the StartXDom, StartXSub
and StartY values when they are loaded into the DDA units. The
original registers are not affected:
0: Zero is added
1: Half is added
2: Nearly half, i.e. 0x7fff is added

6 ForceBackgroundColor This bit, when set, causes the color to be taken from the Texel0
register instead of the normal color if the bitmask test fails.

7,8 BitMaskByteSwapMode Controls byte swapping of the bitmask. If input is ABCD,
0: ABCD
1: BADC
2: CDAB
3: DCBA

9 BitMaskPacking If enabled, the current bitmask is discarded at the end of every
scanline even if it has not been finished.
0: Enabled
1: Disabled

10..14 BitMaskOffset Position of first bit to test in bitmask.

15,16 HostdataByteSwapMode Controls byte swapping of host data. If input is ABCD,
0: ABCD
1: BADC
2: CDAB
3: DCBA

17 Reserved

Rasterizer Unit

4-31Graphics Programming

Table 4–4. Rasterizer Mode Register (Continued)

Bit No. Name Description

18 LimitsEnable If enabled, quickly reject areas of primitive outside defined area.
0: Enabled
1: Disabled

19 BitMaskRelative Controls whether bitmask is indexed by counter or by lower 5 bits of X
value.
0: Disabled
1: Enabled

The register BitMaskPattern simply holds the 32-bit mask for bit mask stippling.

Scissor/Stipple Unit

 4-32

4.4 Scissor/Stipple Unit

Two scissor tests are provided in the TVP4010: the User Scissor test and the
Screen Scissor test. The user scissor checks each fragment against a user
supplied scissor region; the screen scissor checks that the fragment lies within
the screen. The stipple test checks each fragment against an 8 x 8 pattern.

4.4.1 User Scissor Test

The user scissor test, tests each fragment as follows:

XMin <= X < XMax

YMin <= Y < YMax

Where X and Y are the coordinates for the fragments, and XMin, XMax, YMin
and YMax define the user supplied scissor region. When a fragment fails the
test, it is discarded. The test may be screen or window relative. This test
applies to normal pixels and block fill operations.

4.4.2 Screen Scissor Tests

This test ensures that a pixel lies within the screen boundaries. For each
fragment the XY origin stored in the WindowOrigin register is added to the
fragment coordinates and this is tested against the screen boundaries stored
in the ScreenSize register. Since the X and Y coordinates are held as 2s
complement numbers, the window origin can be moved off the edges of the
screen.

The following test is made:

0 <= (X + WX) < SW

0 <= (Y + WY) < SH

Where:

X = Fragment X coordinate WX = Window origin X
coordinate

Y = Fragment Y coordinate WY = Window origin Y
coordinate

SW = Screen Width

SH = Screen Height

Figure 4–10 below shows a simple scenario of a screen with a single window
which has a user defined scissor region. The shaded area shows the region
where fragments pass the user and screen scissor tests and so can progress
in the pipeline. Fragments outside this region are culled from the pipeline. This
test applies to normal pixels and block fill operations.

Scissor/Stipple Unit

4-33Graphics Programming

Figure 4–10. Screen Scissor and User Scissor Tests

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

Screen Width (SW)

Screen

Height

(SH)

Window Origin

(WX, WY)
Scissor Min Scissor Region

Screen

Scissor Max

Writable Region

This test may reject fragments when some part of a window has been moved
off the screen. It will not reject fragments when part of a window is simply
overlapped by another window.

4.4.3 Area Stippling

An 8 x 8 bit area stipple pattern can be applied to fragments. The least
significant 3 bits of the fragment’s (X,Y) coordinates, index into a 2D stipple
pattern. If the selected bit in the pattern is set, then the fragment passes the
test, otherwise it is rejected. In addition the bit pattern can be inverted or
mirrored. Inverting the bit pattern has the effect of changing the sense of the
accept/reject test. If the mirror bit is set the most significant bit of the pattern
is towards the left of the window, the default is the converse.

In some situations window relative stippling is required but coordinates are
only available screen relative. To allow window relative stippling, an offset is
available which is added to the coordinates before indexing the stipple table.
X and Y offsets can be controlled independently.

If the ForceBackgroundColor bit is set in the AreaStippleMode register,
fragments which fail the area stipple test are not discarded. Instead, the
contents of the Texel0 register are used in place of the normal color for that
pixel.

Scissor/Stipple Unit

 4-34

Area stippling is enabled using the AreaStippleMode register and must be
qualified by the AreaStippleEnable bit in the Render command register.
Stippling is only applied to normal pixels and has no effect on block fills.

4.4.4 Registers

The scissor operation is controlled by the ScissorMode register as shown in
Figure 4–11:

Figure 4–11.Scissor Mode Register

08162431

Reserved

Screen scissor enable

User scissor enable

Normally, the screen scissor test were always be enabled. The most common
exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and
ScissorMaxXY the X values are stored in the least significant 16 bits of the
register, the Y values in the most significant 16 bits of the register.

The WindowOrigin register has the X coordinate of the origin stored in the least
significant 16 bits of the register, and the Y coordinate in the most significant
16 bits of the register. As each fragment is generated by the Rasterizer unit,
this origin is added to the coordinates of the fragment to generate its screen
coordinates.

The ScreenSize register specifies the screen width and height, with the width
in the least significant 16 bits and the height in the most significant 16 bits.

The area stipple operation is controlled by the AreaStippleMode register as
shown in Figure 4–12:

Scissor/Stipple Unit

4-35Graphics Programming

Figure 4–12. AreaStippleMode Register

08162431

Reserved Y Offset X Offset Reserved

Invert Stipple Pattern

ForceBackgroundColor

MirrorY

MirrorX

Not used Not used Enable Unit

The EnableUnit bit is qualified by the AreaStippleEnable bits in the Render
command register. The area stipple is set up in the AreaStipplePattern n
register, where n represents an integer between 0 and 7.

4.4.5 Scissor Example

To enable screen scissor for a region: 10 <= X < 500, 100 <= Y < 200 with a
screen size of 1280x1024 and the window origin at (100,100).

// Set the screen size

screenSize.Width = 1280

screenSize.Height = 1024

ScreenSize(screenSize)

// Set the window origin

windowOrigin.X = 100

windowOrigin.Y = 100

// Set–up the user scissor values

minXY.X = 10

minXY.Y = 100

maxXY.X = 500

maxXY.Y = 200

ScissorMinXY(minXY) // Load the registers

ScissorMaxXY(maxXY)

// Enable the unit

scissorMode.UserScissorEnable = TVP4010_ENABLE

scissorMode.ScreenScissorEnable = TVP4010_ENABLE

ScissorMode(scissorMode)

Scissor/Stipple Unit

 4-36

// Render primitives

4.4.6 Area Stipple Example

A repeating area stipple pattern of 2 x 2 pixels producing a 50% gray area:

AreaStipplePattern0(0xAA)

AreaStipplePattern1(0x55)

AreaStipplePattern2(0xAA)

AreaStipplePattern3(0x55)

AreaStipplePattern4(0xAA)

AreaStipplePattern5(0x55)

AreaStipplePattern6(0xAA)

AreaStipplePattern7(0x55)

// Set–up mode register

areaStippleMode.UnitEnable = TVP4010_ENABLE

areaStippleMode.XOffset = 0

areaStippleMode.YOffset = 0

areaStippleMode.Invert = 0

areaStippleMode.MirrorY = 0

areaStippleMode.MirrorX = 0

// Load mode register

AreaStippleMode(areaStippleMode)

// When issuing a Render command, the AreaStippleEnable

// bit should be set in addition to the area stipple test

// being enabled:

// render.AreaStippleEnable = TVP4010_TRUE

Localbuffer Read and Write Units

4-37Graphics Programming

4.5 Localbuffer Read and Write Units

The localbuffer holds the Stencil and Depth data associated with a fragment.
Although separate units in the Hyperpipeline, the localbuffer read and write
units are best considered as a pair.

4.5.1 Localbuffer Read

The LBReadMode register can be configured to make 0, 1, or 2 reads of the
localbuffer. The following are the most common modes of access to the local-
buffer:

� Normal rendering without depth or stencil testing. This requires no local-
buffer reads or writes.

� Normal rendering with depth and/or stencil testing required which
conditionally requires the localbuffer to be updated. This requires
localbuffer reads and writes to be enabled.

� Copy operations. Operations which copy all or part of the localbuffer. This
requires reads and writes enabled.

� Upload/download operations. Operations which download depth or
stencil information to the localbuffer, or read back depth or stencil values
from the localbuffer to the host.

The address calculation implements the following equations:

Bottom left origin :

Destination address = LBWindowBase – Y * W + X

Source address = LBWindowBase – Y * W + X + LBSour-
ceOffset

Top left origin :

Destination address = LBWindowBase + Y * W + X

Source address = LBWindowBase + Y * W + X + LBSour-
ceOffset

Localbuffer Read and Write Units

 4-38

where:

Destination address is the address any write will be made to and any destination read will
be made from.

Source address is the address a source read will be made from.

X is the pixel’s X coordinate.

Y is the pixel’s Y coordinate.

LBWindowBase holds the base address in the localbuffer of the current window.

LBSourceOffset is normally zero except during a copy operation where data is read
from one address and written to another address. The offset from
destination to source is held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are supported and these
are encoded into the PP0, PP1 and PP2 fields in the LBReadMode
register. See the table in Appendix C for more details.

The localbuffer can be read in three formats: LBDefault, LBStencil or LBDepth.
These tell the TVP4010 which areas of the localbuffer are required. LBDefault
is used for all copy and rendering operations, LBStencil and LBDepth are used
for image upload of the Stencil and Depth planes. Table 4–5 summarizes the
common rendering operations and the read modes required for them:

Table 4–5. Localbuffer Read/Write Modes

ReadSource ReadDestination Writes Data Type Rendering Operation

Disabled Disabled Disabled – Rendering with no Depth or Stencil en-
abled.

Disabled Disabled Enabled LBStencil
LBDepth

Download to localbuffer from host

Disabled Enabled Disabled LBStencil
LBDepth

Upload from localbuffer to host

Disabled Enabled Enabled LBDefault Rendering with depth and/or stencil up-
dates enabled.

Enabled Disabled Enabled LBDefault Localbuffer copy operations .

Incorrect data can be read if reads are enabled but the same data had just
been written with reads disabled. To avoid this problem, a WaitForCompletion
command should be sent after enabling reads, but prior to the next primitive.

4.5.2 Localbuffer Write

Writes to the localbuffer must be enabled to allow any update of the localbuffer
to take place. The LBWriteMode register is a single bit flag which controls
updating of the buffer.

Localbuffer Read and Write Units

4-39Graphics Programming

4.5.3 Localbuffer Data Formats

The Depth field can be either 15 or 16 bits wide and the Stencil field either 1
or 0 bits wide. The total width of the localbuffer data should not be greater than
16 bits. If a Stencil field is defined it occupies bit 15; the depth field always starts
at bit 0.

The LBReadFormat and LBWriteFormat registers must be configured to the
appropriate values. The format can be different for different windows.

4.5.4 Registers

The LBReadMode register is as shown below in Figure 4–13:

Figure 4–13. LBReadMode Register

08162431

Reserved PP2Reserved PP1 PP0

Patch Enable

Window origin

Data Type

Read Destination enable

Read Source enable

Partial product selection

PatchEnable, when set, enables normal patch addressing of the localbuffer.
This typically results in more efficient memory bandwidth utilization.

The Partial Product fields PP0, PP1, and PP2 define the width of the
localbuffer; they are described in Appendix C.

ReadSourceEnable and ReadDestinationEnable control localbuffer reads of
the destination address and source address respectively. DataType controls
the format of localbuffer data, and WindowOrigin specifies if the window origin
is Top Left or Bottom Left.

The localbuffer format must be specified for both reads and writes using the
LBReadFormat and LBWriteFormat registers see, Figure 4–14. Normally
these registers are set to identical values. It may be useful to set them to
different values when copying between two windows using different depth
widths.

Localbuffer Read and Write Units

 4-40

Figure 4–14. LBReadFormat / LBWriteFormat Register

08162431

Reserved

Write Enable

Stencil Width

LBWriteMode is a single bit register, see Figure 4–15. When the least
significant bit is set, writes to the localbuffer are enabled.

Figure 4–15. LBWriteMode Register

08162431

Reserved

Write Enable

LBSourceOffset holds a 24 bit 2s complement value used in copy operations.

LBWindowBase updates the base address of the localbuffer.

The relative positions of the depth and stencil fields within the localbuffer are
fixed. If a Stencil field is defined, then it occupies bit 15. The depth field always
commences at bit 0.

4.5.5 Localbuffer Example

The following is an example of a rendering operation with localbuffer read and
write. The TVP4010 is configured with a 16 bit localbuffer such that 15 bits are
used for depth and 1 bit for stencil with a screen size of 800 x 600.

lbReadFormat.DepthWidth = 3 // 15 bit

lbReadFormat.StencilWidth = 3 // 1 bit

LBReadFormat(lbReadFormat) // Load read format

LBWriteFormat(lbReadFormat) // Write is same as
read

// Set the localbuffer write mode

LBWriteMode(0x1)

// Set the localbuffer read mode

Localbuffer Read and Write Units

4-41Graphics Programming

// Partial products for 800 : 512 + 256 + 32

lbReadMode.PP0 = 5 // 512 (<< 9)

lbReadMode.PP1 = 4 // 256 (<< 8)

lbReadMode.PP2 = 1 // 32 (<< 5)

lbReadMode.ReadSource = TVP4010_DISABLE

lbReadMode.ReadDestination = TVP4010_ENABLE

lbReadMode.DataType = TVP4010_LBDEFAULT

lbReadMode.WindowOrigin = as appropriate

lbReadMode.PatchMode = TVP4010_DISABLE

LBReadMode(lbReadMode)

LBWriteMode(TVP4010_DISABLE)

// Now ready to render with localbuffer read and write

// suitable for stencil and depth buffering operations.

Stencil/Depth Test Unit

 4-42

4.6 Stencil/Depth Test Unit

The stencil test conditionally rejects fragments based on the outcome of a
comparison between the value in the stencil buffer and a reference value. The
stencil buffer is updated according to the current stencil update mode which
depends on the result of the stencil test and the depth test. Stencil testing can
be used in many different ways, e.g., hidden line removal, decals, masking
areas of the screen, and stippling.

The depth (Z) test, if enabled, compares the fragment depth against the
corresponding depth in the depth buffer. If the test fails, the fragment is
rejected.

4.6.1 Stencil Test

This test only occurs when all the preceding tests (bitmask, scissor, stipple)
have passed. The stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test between the reference
stencil value and the value held in the stencil buffer. If the test is LESS and the
result is true, then the fragment value is less than the source value. The stencil
operation controls the updating of the stencil buffer and is dependent on the
result of the stencil and depth tests.

Table 4–6 shows the stencil functions available:

Table 4–6. Stencil Comparison Modes

Mode Comparison Function

0 Never

1 Less

2 Equal

3 Less or Equal

4 Greater

5 Not Equal

6 Greater or Equal

7 Always

If the stencil test is enabled, then the stencil buffer is updated depending on
the outcome of both the stencil and the depth tests (if the depth test is disabled
the depth result is set to pass). See Tables 4–7 through 4–9 and the definition
of the StencilMode register in subsection 4.6.3 to fully understand their
relationship.

Stencil/Depth Test Unit

4-43Graphics Programming

Table 4–7. Possible Update Operations for Stencil Planes

Stencil Test

Pass Fail

Depth Test Pass dppass sfail

Fail dpfail sfail

The entries dppass, dpfail and sfail are set to one of the update operations
shown in Table 4–8, source stencil is the value in the stencil buffer:

Table 4–8. Stencil Operations

Update Method Mode Stencil Value

Keep 0 Source stencil

Zero 1 0

Replace 2 Reference stencil

Increment 3 Clamp (Source stencil + 1) to 2stencil width – 1

Decrement 4 Clamp (Source stencil –1) to 0

5 ~Source stencil

In addition, a comparison bit mask is supplied in the StencilData register. This
is used to establish which bits of the source and reference value are used in
the stencil function test.

The source stencil value can be from a number of places as controlled by a
field in the StencilMode register:

Table 4–9. Stencil Sources

LBWriteData Stencil Use

Test logic This is the normal mode.

Stencil register This is used, for instance, in the OpenGL draw pixels function where the
host supplies the stencil values in the Stencil register.
It is used when a constant stencil value is needed, for example when
clearing the stencil buffer .

LBSourceData: (stencil val-
ue read from the localbuffer)

This is used, for instance, in the OpenGL copy pixels function when the
stencil planes are to be copied to the destination. The source is offset from
the destination by the value in LBSourceOffset register.

Source stencil value read
from the localbuffer

This is used, for instance, in the OpenGL copy pixels function when the
stencil planes in the destination are not to be updated. The stencil data will
come from the localbuffer data.

See The OpenGL Reference Manual and The OpenGL Programming Guide
from Addison-Wesley for more details of the stencil operations and examples
of its use.

Stencil/Depth Test Unit

 4-44

4.6.2 Depth Test

This test is only performed if all the preceding tests (bitmask, scissor, stipple)
have passed. The comparison tests available are shown in Table 4–10:

Table 4–10. Depth Comparison Modes

Mode Comparison Function

0 Never

1 Less

2 Equal

3 Less Than or Equal

4 Greater

5 Not Equal

6 Greater Than or Equal

7 Always

The test compares the fragment depth against a source depth value. If the
compare function is LESS and the result is true then the fragment value is less
than the source value. The source value can be obtained from a number of
places as controlled by a field in the DepthMode register.

Table 4–11. Depth Sources.

Source Use

DDA (see below) This is used for normal Depth buffered 3D rendering.

Depth register This is used, for instance, in the OpenGL draw pixels function where the
host supplies the depth values through the Depth register.
Alternatively this is used when a constant depth value is needed, for
example, when clearing the depth buffer or 2D rendering where the depth is
held constant.

LBSourceData: Source
depth value from the
localbuffer

This is used, for instance, in the OpenGL copy pixels function when the
depth planes are to be copied to the destination.

Source Depth This is used, for instance, in the OpenGL copy pixels function when the
depth planes in the destination are not updated. The depth data will come
from the localbuffer.

For a depth buffered trapezoid, the TVP4010 interpolates from the dominant
edge of a trapezoid to the subordinate edges. This means that two increment
values are required, one to move along the dominant edge and one to move

Stencil/Depth Test Unit

4-45Graphics Programming

across the span to the subordinate edge. This is illustrated in Figure 4–16. The
rendering direction chosen here is bottom to top.

ZStart = Start Z value

dZdyDom = Increment along dominant edge.

dZdx = Increment along the scan line.

The dZdx value is not required for Z-buffered lines.

Figure 4–16. Depth Interpolation

dZdyDom dZdx

Subordinate Edges

ZStart

Dominant Edge

The number format for the increment values is 2s complement fixed point
integer: 16 bits integer and 11 bits fraction. All the start, derivative and internal
data is in this format. This is mapped into the Upper and Lower registers (U
and L) as shown in Figure 4–17.

Figure 4–17. Depth Derivative Format

remaining bits11 bits fraction16 bits integer

sign bit

not used

U L

This data format is compatible with GLINT 300SX and GLINT 500TX graphics
processors. In many instances, the fractional part can be left containing zero,
avoiding the need to continually update ZStartL, dZdxL and dZdyDomL .

The Depth unit must be enabled to update the depth buffer. If it is disabled then
the depth buffer will only be updated if ForceLBUpdate is set in the Window
register. If no updates of the localbuffer are required, setting DisableLBUpdate
in the Window register may improve performance.

Stencil/Depth Test Unit

 4-46

4.6.3 Registers

Stencil test is controlled by the StencilMode register as shown in Figure 4–18:

Figure 4–18. StencilMode Register

08162431

Reserved src func sfail dppassdpfail

Stencil source

Unsigned compare function

Update Method

Unit enable

The StencilData register holds the other data associated with the test, see
Figure 4–19.

Figure 4–19. StencilData Register

08162431

Reserved

Write Mask

Reserved Reserved

Reference StencilCompare Mask

The stencil writemask is used to control which stencil planes are updated as
a result of the test. The Stencil register holds an externally sourced stencil
value. It is a 32-bit register of which only the least significant bit is used. The
unused bits should be set to zero.

The Stencil unit must be enabled to update the stencil buffer. If it is disabled
then the stencil buffer will only be updated if ForceLBUpdate is set in the
Window register.

Operation of the Depth unit is controlled by the DepthMode register as shown
in Figure 4–20:

Figure 4–20. DepthMode Register

08162431

Reserved

Compare Mode New Depth Source

Write Mask

Unit enable

Stencil/Depth Test Unit

4-47Graphics Programming

The single bit writemask is used to control updating all the bits in the depth
buffer.

The Depth register holds an externally sourced 16 bit depth value. If the depth
buffer holds 15bits then the user supplied depth value is right justified to the
least significant end of the register. The unused most significant bit should be
set to zero.

The DDA and other registers are shown in Table 4–12 (note that increment val-
ues are split into two registers):

Table 4–12. Depth Interpolation Registers

Register Description

ZStartU Depth start value

ZStartL

dZdxU Depth derivative per unit X

dZdxL

dZdyDomU Depth derivative per unit Y, dominant edge, or along a line.

dZdyDomL

The Window register, (see Figure 4–21) is used to control the update of the
localbuffer.

Figure 4–21. Window Register

08162431

Disable LB Update

ReservedReserved

LB Update Source
Force LB Update

Reserved

4.6.4 Stencil Example

This stencil example sets the Stencil unit to use a supplied reference value
(0x1) and to test fragments to be LESS than this value. It also sets the stencil
planes update function to Decrement when the test passes and the depth test
passes (or is not enabled), otherwise, it sets the update function to Keep.
Because Decrement is the selected mode, this example does not require that
the Stencil register be loaded.

Stencil/Depth Test Unit

 4-48

// Set the localbuffer read and write modes

// See section 4.5

// Set the stencil modes

stencilMode.UnitEnable = TVP4010_ENABLE

stencilMode.DPPass = TVP4010_STENCIL_METHOD_DECREMENT

stencilMode.DPFail = TVP4010_STENCIL_METHOD_KEEP

stencilMode.SFail = TVP4010_STENCIL_METHOD_KEEP

stencilMode.CompareFunction = TVP4010_STENCIL_COMPARE_LESS

stencilMode.StencilSource = TVP4010_SOURCE_TEST_LOGIC

StencilMode(stencilMode)

// Set the reference stencil value and set the

// compare and writemasks to 0x1

stencilData.ReferenceStencil = 0x1

stencilData.CompareMask = 0x1

stencilData.StencilWriteMask = 0x1

StencilData(stencilData)

// Enable the depth test here if required, if not enabled

// the result of the depth test is set to pass.

4.6.5 Depth Example

This depth example does the required set up for drawing a depth buffered
primitive.

// Set the localbuffer read and write modes

// See section 4.5

depthMode.UnitEnable = TVP4010_ENABLE

depthMode.WriteMask = 1

depthMode.NewDepthSource = TVP4010_NEW_DEPTH_SOURCE_DDA

depthMode.CompareMode = TVP4010_DEPTH_COMPARE_MODE_LESS

DepthMode(depthMode)

// Load the depth start values and deltas for the dominant
edge

// and the body of the trapezoid

ZStartU() // Load upper and lower start values

ZStartL()

dZdxU() // Load upper and lower dZdx deltas

dZdxL()

dZdyDomU() // Load upper and lower dominant edge deltas

dZdyDomL()

// Render primitive

Texture Address Unit

4-49Graphics Programming

4.7 Texture Address Unit

The Texture Address unit calculates the address of the texel that maps to the
current fragment XY position. Perspective correction can be applied as part
of the operation.

The texture coordinates are referred to as S and T where S is analogous to X
and T to Y. The S and T values are generated by interpolation; a third
component, Q, may also be interpolated and is used in perspective correction.

4.7.1 Texture Interpolation

The DDA units perform linear interpolation given a set of start and increment
values.

The TVP4010 interpolates from the dominant edge of a trapezoid to the subor-
dinate edges. This means that two increment values are required per texture
component, one to move along the dominant edge and one to move across
the span to the subordinate edge. This is illustrated, for the S component, in
the diagram of Figure 4–22:

Figure 4–22. Texture Address Interpolation

dZdyDom dS dx

Subordinate Edges

ZStart

Dominant Edge

SStart = Initial S value

dSdyDom = S gradient in the Y direction along the domi-
nant edge

dSdx = S gradient in the X direction

The calculation for the delta values is the same as other parameters such as
depth values (see subsection 4.2.5).

When perspective correction is not enabled, then the S and T values are the
texture coordinates of the appropriate vertex. When perspective correction is

Texture Address Unit

 4-50

enabled the texture coordinates are divided by the homogenous coordinate W,
and Q is formed from 1/W. S and T are then normalized with respect to Q so
that Q lies in the range 1 to 1/127. These values are then used to calculate
delta values in the same way as for color or depth. If the dynamic range of Q
is such that it cannot be normalized to the supported range, the software
should either tessellate the triangle into smaller regions to reduce the range
or accept a reduction in accuracy; a Q value of zero will be handled in a
reasonable manner.

If perspective correction is enabled, each interpolated S and T value is divided
by the interpolated Q value. If fast perspective correction is enabled, the a
faster but less accurate division is used. The result is passed to the Texture
Read unit which reads the texel from memory.

If subpixel correction has been enabled for a primitive, then any correction
required will be applied to the texture coordinates.

4.7.2 Registers

The S and T values are in 30-bit 2s complement format, see Figure 4–23.

Figure 4–23. Fixed Point S and T Format

08162431

Integer Fraction

Reserved

The Q values are in 29-bit 2s complement format, see Figure 4–24.

Figure 4–24. Fixed Point Q Format

08162431

Integer Fraction

Reserved

Texture Address Unit

4-51Graphics Programming

The registers to set up Texture interpolation are shown in Table 4–13.

Table 4–13. Texture Interpolation Registers

Register Data Field Description

SStart 30 bit 2s comp fix pt S start value

dSdx 30 bit 2s comp fix pt S derivative per unit X

dSdyDom 30 bit 2s comp fix pt S derivative per unit Y, dominant edge

TStart 30 bit 2s comp fix pt T start value

dTdx 30 bit 2s comp fix pt T derivative per unit X

dTdyDom 30 bit 2s comp fix pt T derivative per unit Y, dominant edge

QStart 29 bit 2s comp fix pt Q start value

dQdx 29 bit 2s comp fix pt Q derivative per unit X

dQdyDom 29 bit 2s comp fix pt Q derivative per unit Y, dominant edge

To enable accurate perspective correction, the Perspective Correction bit in
the TextureAddressMode register must be set, see Figure 4–25. To enable,
fast, though less accurate, perspective correction, both the Fast and
Perspective Correction bits must be set. For many applications, fast
perspective correction provides more than adequate results. Note that the
Texture Enable bit in the Render command must also be set for texture
mapping.

Figure 4–25. TextureAddressMode
08162431

Reserved

Delta Format
Fast

Perspective Correction

Enable umi

When the TVP4010 is being used in conjunction with a GLINT Delta processor,
the Delta Format bit in the TextureAddressMode register should be set. This
allows the TVP4010 to make use of the texture delta values e.g. dSdx , that
are generated by the GLINT Delta. When the TVP4010 is configured without
a GLINT Delta processor, this bit should be reset.

4.7.3 Texture Interpolation Example

This texture interpolation example sets up the parameters for 2D texture
mapping. 1D texture mapping can be achieved by setting TStart, dTdx and
dTdyDom to zero.

Texture Address Unit

 4-52

// Load the start values and deltas for the dominant edge

// and the body of the trapezoid

SStart() // Load S start value

 TStart() // Load T start value

QStart() // Load Q start value

dSdx() // Load S delta for X

dTdx() // Load T delta for X

dQdx() // Load Q delta for X

dSdyDom() // Load S dominant edge delta

 dTdyDom() // Load T dominant edge delta

dQdyDom() // Load Q dominant edge delta

// Render primitive

Texture Read Unit

4-53Graphics Programming

4.8 Texture Read Unit

The texture buffer holds texture data. The buffer shares the same memory as
the localbuffer and framebuffer; texture maps are normally written to memory
through the framebuffer write unit in a similar manner to image download.

The Texture Read unit receives texture addresses from the Texture Address
unit and reads data from memory. If bilinear filtering is enabled, several
accesses may be done to collect the correct number of texels.

4.8.1 Read Unit

The address calculation implements the following equations:

Bottom left origin:

Address = TextureBaseAddress – T* W + S

Top left origin:

Address = TextureBaseAddress + T * W + S

where:

Address is the address any read will be made from.

S is the texel’s S coordinate.

T is the texel’s T coordinate.

TextureBaseAddress holds the base address of the current texture.

W is the texture width. Only a subset of widths are supported and these
are encoded into the PP0, PP1 and PP2 fields in the TextureRead-
Mode register. See Appendix C for more details.

The TextureMapFormat register specifies how the texture map is held in
memory. This includes the width of the texture map using partial product codes
and the size of the texel. The TextureReadMode register specifies how the
texture map should be handled internally. This sets the width (maximum S)
and height (maximum T) that should be used when accessing the texture.
There are three ways that the address can be modified when it exceeds either
the width or height (or goes negative) as follows:

Clamp clamps the coordinate to 0 or the maximum value.

Repeat accesses the map modulo the width or height. This results in the
texture map being repeated.

Mirror accesses the map modulo the width or height and mirror alternate
texture maps.

The width used to repeat or clamp can be different to the width used to set the
stride of the texture in memory. This allows a texture to be selected from part
of a larger image.

Texture Read Unit

 4-54

4.8.2 Texture Filtering

A bilinear filter is available which combines the values of the four texels
surrounding the index into the texture map to produce a single value. This filter
will reduce pixelation effects when textures are enlarged and reduce aliasing
effects when textures are shrunk.

4.8.3 Texture Formatting

The texture map can be held in memory in a variety of formats that correspond
to the formats supported by the framebuffer. Two additional formats are
provided to allow texture maps to be stored in YUV color format. When a texel
is read into the TVP4010, it is converted to the internal color format. External
color formats are shown in Table 4–1.

NOTE:
The color format value is made up of the 4 bits of the TextureFormat field and
the 1 bit TextureFormatExtension field in the TextureDataFormat register.

If the selected format has no alpha buffer, a default value of 0xF8, which is the
maximum is used. If the NoAlphaBuffer bit is set in the TextureDataFormat
register, then 0xF8 is used even if the format has an alpha buffer.

If the texture is in Color Index mode (either 4 or 8 bits) the single value is
repeated for all color components. If the framebuffer format is also Color Index,
the single value is used as the pixel color; if the framebuffer is RGBA, then the
texture value becomes grey scale. If a 4-bit CI texel is written to an 8 bit CI
framebuffer, the value is written to the upper four bits of the framebuffer byte.

The texture values can be indexed through an 8-bit lookup table inside the
TVP4010. This LUT holds 16 RGB values. If the 4-bit CI mode is used, one
RGB color can be mapped to each texture value. If the 8-bit CI mode is used,
the index is taken from the upper four bits of the texel value.

4.8.4 Registers

The TextureReadMode register controls the way that textures are read from
memory.

The S and T wrap modes can be set to clamp, repeat or mirror as described
earlier.

With Filter Mode disabled, nearest–neighbor texture mapping will be
performed. With this bit set, bilinear filtering is enabled.

The Packed Data bit is used to define how texels are read from memory. If this
bit is cleared, each texel is read one at a time; if set, several texels can be read

Texture Read Unit

4-55Graphics Programming

simultaneously improving efficiency. The actual number of texels read in this
case is dependant on the texel size. See subsection 4.10.4 for how this can
be used for packed copies.

The TextureReadMode register (see Figure 4–26) controls the way that
textures are read from memory. With Filter Mode disabled, nearest-neighbor
texture mapping is performed. With it set, bilinear filtering is enabled.

Figure 4–26. TextureReadMode Register

08162431

Reserved

Enable

Reserved ReservedWidthWeight

The TextureMapFormat register (see Figure 4–27) specifies the way that the
texture map is held in memory. The partial product codes are detailed in
Appendix C. The window origin specifies the origin as being top left or bottom
left. SubPatchMode when enabled, improves the performance of typical
texture mapping.

Figure 4–27. TextureMapFormat Register

08162431

Reserved

Texel Size

Reserved PP2 PP1 PP0

Reserved

Sub Patch mode

Window Origin
Partial Product Selection

The TextureDataFormat register (see Figure 4–28) specifies the color format
of the texture. The TextureFormat combined with the TextureFormat Extension
contain one of the modes described in Table 3–1 of Chapter 3. The color order
specifies whether the texture is in RGB or BGR color format.

Texture Read Unit

 4-56

Figure 4–28. TextureDataFormat Register

08162431

Reserved

textgoeshere

textgoeshere

textgoeshere

textgoeshere

The TexelLUT0 to 15 registers contain the texture color look-up table. Each
register contains 5 bit fields for red, green and blue color components. The
TexelLUTMode register (see Figure 4–29) allows use of the TexelLUT0 to 15
registers. When enabled, the texel value becomes an index into this look-up
table.

Figure 4–29. TexelLUTMode Register

08162431

Reserved

Enable

4.8.5 Texture Download Example

The following is an example of texture downloading:

fbReadMode.PatchMode = TVP4010_TRUE

fbReadMode.SubPatchMode = TVP4010_SUBPATCH

FBReadMode(fbReadMode);

fbWriteMode.Enable = TVP4010_TRUE

FBWriteMode(fbWriteMode)

// Set format to 8 bits

ditherMode.UnitEnable = TVP4010_TRUE

ditherMode.Enable = TVP4010_FALSE

ditherMode.ColorMode = TVP4010_COLOR_FORMAT_RGB_332

DitherMode(ditherMode)

// Do image download

Texture Read Unit

4-57Graphics Programming

4.8.6 Texture Mapping Example

The pseudecode to texture map a trapezoid follows:

textureAddressMode.Enable = TVP4010_TRUE

textureAddressMode.PerspectiveCorrection = TVP4010_TRUE

TextureAddressMode(textureAddressMode)

// Load texture address parameters

SStart()

dSdx()

dSdyDom()

TStart()

dTdx()

dTdyDom()

QStart()

dQdx()

dQdyDom()

// Configure texture read

textureReadMode.Enable = TVP4010_TRUE

textureReadMode.SWrapMode = TVP4010_TEXTURE_WRAP_REPEAT

textureReadMode.TWrapMode = TVP4010_TEXTURE_WRAP_REPEAT

textureReadMode.Width = width

textureReadMode.Height = height

textureReadMode.FilterMode = TVP4010_FALSE

TextureReadMode(textureReadMode)

textureMapFormat.PP0 = partialProduct0

textureMapFormat.PP1 = partialProduct1

textureMapFormat.PP2 = partialProduct2

textureMapFormat.SubPatchMode = TVP4010_TRUE

textureMapFormat.TexelSize = TVP4010_8_BITS_PER_TEXEL

TextureMapFormat(textureMapFormat)

textureDataFormat.TextureFormat = TVP4010_COLOR_FOR-
MAT_RGB_332

TextureDataFormat(textureDataFormat)

// Enable texture/fog/blend unit, load other parameters

// and render

YUV Unit

 4-58

4.9 YUV Unit

The YUV unit converts the YUV color format, also known as YCbCr, to RGB
format. It also does chroma-key testing. Chroma-key testing may be done
either before or after the conversion.

The YUV conversion is done on data that is being loaded into the Texel0
register. The data for this may come from the TextureRead unit or from the
host, so YUV conversion can be done either during texture download or on a
texture as it is applied to a primitive. The YUV data can be in either 444 format
or 422 format. The chroma test may be done with either YUV or RGB data.

4.9.1 Chroma Test

The chroma test specifies upper and lower bounds against which the Texel0
value is tested. The test may be set to pass when the components of Texel0
are either all inside or all outside the bounds. This is controlled by the
accept/reject TestMode options of the YUVMode register. If the test passes,
the Texel0 data may be used in the Texture/Fog/Blend unit as normal. If the
test fails, then the fragment to which the texture data maps, may be rejected
(not plotted). This is useful for cut–outs and sprites. Alternatively, on test
failure, the Texel0 value may be rejected and the texture operation on the
fragment suppressed. This is achieved by setting the RejectTexel bit in the
YUVMode register. In this case the underlying color provided by the TVP4010
is used without being modified by the texture color. This is useful for applying
a logo to a shaded polygon where the underlying color is provided by the Color
DDA unit.

The test modes available are shown in Table 4–14.

Table 4–14. Chroma Test Modes

Mode Test Mode

0 No test

1 Accept

2 Reject

Chroma-key testing can be done without involving texture mapping. This is
achieved by setting the TexelDisableUpdate field in the YUVMode register
(see Figure 4–30). This allows fragments to be rejected by chroma testing as
part of a copy operation. If chroma testing is required against the destination
color of a copy (i.e., only overwrite pixels of the specified color), then the
destination region of the screen is used as the texture map and the framebuffer
units are set-up to do a normal copy. The texels are read in and tested, and

YUV Unit

4-59Graphics Programming

fragments rejected if the colors do not match. If the fragment has been
rejected, then the copy for that pixel will not take place. Setting the
TexelDisableUpdate bit discards the texel as soon as the test has been done
which improves performance.

Figure 4–30. YUVMode Register

08162431

Integer Portion

Enable

textgoeshere

textgoeshere

textgoeshere

textgoeshere

The TestData bit controls when the chroma test occurs in relation to the color
conversion. Setting this bit causes the chroma test to occur on the output of
the unit; clearing it causes the chroma test to occur on the input i.e., after or
before color conversion respectively, assuming the Enable bit is set.

The TestMode can be set as follows: (see Figure 4–31)

� Accept, i.e., pass test if (upper bound <= color >= lower bound

� Reject, i.e., fail test if (upper bound <= color >= lower bound

Figure 4–31. ChromaUpperBound and ChromaLowerBound Registers

RGB format

08162431

Alpha GreenBlue Red

08162431

Alpha UV Y

YUV format

Framebuffer Read and Write Units

 4-60

4.10 Framebuffer Read and Write Units

Before drawing can take place, the TVP4010 must be configured to perform
the correct framebuffer read and write operations. Framebuffer read modes
affect the operation of alpha blending, logic ops, software writemasks, image
upload and image copy operations. Framebuffer write modes are relevant to
all drawing in the framebuffer.

4.10.1 Framebuffer Read

The FBReadMode register allows the TVP4010 to be configured to make 0,
1 or 2 reads of the framebuffer. The following are the most common modes of
access to the framebuffer:

� Rendering operations with no logical operations, software writemasking
or alpha blending. In this case no read of the framebuffer is required and
framebuffer writes should be enabled. Framebuffer reads should be
disabled for maximum efficiency.

� Rendering operations which use logical ops, software writemasks or alpha
blending. In these cases the destination pixel must be read from the frame-
buffer and framebuffer writes must be enabled.

� Image copy operations. Here set up depends on whether logical ops,
software writemasks and/or alpha blending are occurring with the copy. If
any of these are, the framebuffer needs two reads, one for the source and
one for the destination. Otherwise, only one read is required.

� Image upload. This requires reading of the destination framebuffer pixels
to be enabled and framebuffer writes to be disabled.

� Image download. This case requires no framebuffer reads (as long as soft-
ware writemasking, alpha blending and logic ops are disabled) and the
write must be enabled.

Note that avoiding unnecessary additional reads will enhance performance.

Note:

The OpenGL specification, allows any combination of the Front, Back, Left
and Right color buffers to be updated simultaneously. In this case a scene
would be rendered multiple times changing the FBPixelOffset as
appropriate. When using this mode it is important to ensure that the buffers
that affect the rendering are updated only once. For example, when
rendering with depth buffering enabled, localbuffer writes should only be
enabled for the last buffer updated.

Framebuffer Read and Write Units

4-61Graphics Programming

For both the read and the write operations, an offset is added to the calculated
address. The source offset (FBSourceOffset) is used for copy operations. The
pixel offset (FBPixelOffset) can be used to allow multi-buffer updates. The
offsets should be set to zero for normal rendering. The address calculation
implements the following equations:

Note: 1)

Bottom left origin:

Destination address = FBWindowBase – Y * W + X + FBPix-
elOffset

Source address = FBWindowBase – Y * W + X + FBPixelOff-
set + FBSourceOffset

Top left origin:

Destination address = FBWindowBase + Y * W + X + FBPix-
elOffset

Source address = FBWindowBase + Y * W + X + FBPixelOff-
set + FBSourceOffset

where:

Destination Address is the address in the framebuffer which is written to if writes are
enabled, and is also the address read when ReadDestination is
enabled.

Source Address is the address in the framebuffer which is read from when Read-
Source is enabled.

X is the pixel’s X coordinate,

Y is the pixel’s Y coordinate,

FBWindowBase holds the base address in the framebuffer of the current window.

FBPixelOffset is normally zero except when multi–buffer writes are needed
when it gives a way to access pixels in alternative buffers
without changing the FBWindowBase register. This is useful as
the window system may be asynchronously changing the
window’s position on the screen. It is held in the FBPixelOffset
register.

FBSourceOffset is normally zero except during a copy operation where data is
read from one address and written to another address. The
FBSourceOffset is held in the FBSourceOffset register and is the
offset from destination to source.

W is the screen width. Only a subset of widths are supported and
these are encoded into the PP0, PP1 and PP2 fields in the
FBReadMode register. See Appendix C for more details.

The data read from the framebuffer may be either FBDefault (data which may
be written back into the framebuffer or used in some manner to modify the
fragment color) or FBColor (data which will be uploaded to the host). Table

Framebuffer Read and Write Units

 4-62

4–15 summarizes the framebuffer read/write control for common rendering
operations.

Table 4–15. Framebuffer Read/Write Modes

ReadSource ReadDestination Writes Read Data
Type

Rendering Operation

Disabled Disabled Enabled – Rendering with no logical operations,
software writemasks or alpha blending.

Disabled Disabled Enabled – Image download.

Disabled Enabled Disabled FBColor Image upload.

Enabled Disabled Enabled FBDefault Image copy with hardware writemasks.

Disabled Enabled Enabled FBDefault Rendering using destination-only
logical operations, software writemasks
or alpha blending.

Enabled Enabled Enabled FBDefault Image copy with logical operations,
software writemasks or alpha blending.

Incorrect data can be read if reads are enabled but the same data has just been
written with reads disabled. To avoid this problem, a WaitForCompletion
command should be sent after enabling reads, but prior to the next primitive.

4.10.2 Framebuffer Write

Framebuffer writes must be enabled to allow the framebuffer to be updated.
A single 1-bit flag controls this operation.

The Framebuffer Write unit is also used to control the operation of fast block
fills, if supported by the framebuffer. Fast fill rendering is enabled via the Fast-
FillEnable bit in the Render command register. The FBBlockColor register
holds the data written to the framebuffer during a block fill operation and should
be formatted to the ’raw’ framebuffer format. When using the framebuffer in 8
bit packed mode, the data should be repeated in each byte. When using the
framebuffer in packed 16 bit mode, the data should be repeated in the top 16
bits.

When uploading images the UpLoadData bit can be set to allow color
formatting. See subsection 4.12.6 for more details.

4.10.3 Patching

Data in the framebuffer can use patched addressing to improve performance
under certain circumstances. However, only non-visible data is normally

Framebuffer Read and Write Units

4-63Graphics Programming

patched. Patch mode organizes data for efficient drawing of scanline
primitives; it also helps line drawing. This form is typically used in the
localbuffer, see subsection 4.5.4, for patching the depth buffer. The SubPatch
mode re-organizes data for efficient texture operations; see section 4.8.4.
SubPatchPack mode is used when 4-bit textures are loaded as 8 bits i.e., the
subpatch packing takes into account the two texels per byte.

4.10.4 Packed Copies

Packed copies move 32 bits at a time even though the real pixel size may be
8 or 16 bits. The PackedDataLimits register holds the left and right X
coordinates for the destination area of the screen in the native pixel format.
Any pixels outside this area are not plotted. The relative offset field in the
FBReadMode register specifies the number of pixels that the source data has
to be adjusted to align with the destination data.

4.10.5 Image Downloads

An image download can be performed in one of four ways. It can be achieved
by loading the data in standard color format into the Color register and using
the Color Format unit to organize it into the framestore format. Or it can be
achieved by loading the data in raw framebuffer format either into the Color
register or the FBData register. The former requires that the Color Format unit
is disabled whilst the latter ignores this unit. Alternatively, the data can be
loaded as some other raw format into the FBSourceData register and have the
Texture/Fog/Blend unit convert it into the internal color format. The Color
Format unit can then convert it into the arrangement to be stored in the
framebuffer. Both techniques require setting up the Rasterizer appropriately.

4.10.6 Fast Texture Download

Normal texture download is done as an image download. This involves setting
up the Rasterizer to draw a rectangle and changing the state of a number of
units. This is a good way to load the texture if any processing needs to be done,
such as color format conversion, color space conversion or patching.

If the texture is held on the host in the raw framebuffer format, the fast texture
download approach can be used. The TextureDownloadOffset register holds
the base address of the framebuffer using 32-bit pixel addressing. The
TextureData register holds the texture data in raw framebuffer format 32 bits
at a time. The load of this register is ignored by all other units in the pipeline
so no state needs to be saved and restored. Following the receipt of each
TextureData value, the TextureDownloadOffset value is incremented. If this
register is read, it returns the current count, not the original value.

Framebuffer Read and Write Units

 4-64

If fast download is used, the texture map on the host must be in the format it
will be stored in memory, including any color formatting, byte swapping, or
address patching. If a texture will be loaded several times, it can be
downloaded as an image the first time using all formatting controls, and then
uploaded again as a raw image for later use.

Using this technique, framebuffer writes do not need to be enabled.

4.10.7 Hardware Writemasks

Hardware writemasks, if available, are controlled using the FBHardwareWrite-
Mask register. If the framebuffer memory devices support hardware write-
masks and they are to be used, then software writemasking should be disabled
(by setting all the bits in the FBSoftwareWriteMask register). See subsection
4.15.3. This will result in fewer framebuffer reads when no logical operations
or alpha blending is needed.

If the framebuffer is used in 8-bit packed mode, then an 8-bit hardware write-
mask must be repeated in all four bytes of the FBHardwareWriteMask register.
If the framebuffer is in 16-bit packed mode then the 16-bit hardware writemask
must be repeated in both halves of the FBHardwareWriteMask register.

As there is no overall enable for this feature, the hardware writemask MUST
be set to all ones, except when hardware writemasking is explicitly required.

4.10.8 Frame Blank Synchronization

The SuspendUntilFrameBlank command register may be used to stall the
TVP4010 pipeline until the next frameblank. For double buffering, it is
beneficial to synchronize to the monitor blanking. By using this register, full
screen double buffering can be controlled through the pipeline and the host
does not need to wait for vertical frame blank itself. Instead, once the
SuspendUntilFrameBlank command register has been loaded, the host can
continue to load the TVP4010 registers and issue commands. The TVP4010
continues to process these as long as they do not involve writing to the
framebuffer. The data field of this register is the base address of the buffer to
be displayed and is passed to the Internal Video Timing generator.

Framebuffer Read and Write Units

4-65Graphics Programming

4.10.9 Registers

The FBReadMode register layout is shown in Figure 4–32:

Figure 4–32. FBReadMode Register

08162431

Reserved PP2Reserved PP1 PP0

Patch Mode

Reserved

Relative offset

Packed data

Patch enable

Reserved

Data type

Window origin

Partial Production selection

Read Source enable

Read Destination enable

See Appendix C for more information on setting partial product codes.

The FBWindowBase register holds the base address of the window in the
framebuffer in 24-bit unsigned format. The FBPixelOffset and FBSourceOffset
registers hold 24-bit 2s complement offsets used in copy operations and
multi-buffer updates, as described above.

The FBWriteMode controls the framebuffer write operations as shown in
Figure 4–33:

Figure 4–33. FBWriteMode Register

08162431

Reserved

UpLoadData

Reserved

Write enable

The FBReadPixel sets the pixel size, Figure 4–34.

Framebuffer Read and Write Units

 4-66

Figure 4–34. FBReadPixel Register

08162431

Reserved

Pixel Size

The PackedDataLimits register is used to control packed copies see Figure
4–35.

Figure 4–35. PackedDataLimits Register

08162431

Not used Not used12 bit integer XStart 12 bit integer XStart

FBHardwareWriteMask is a 32-bit register where each bit acts as a mask.
FBColor is a read-only register which returns the data to the host during image
upload operations.

Framebuffer Read and Write Units

4-67Graphics Programming

4.10.10 Image Copy Example

This image copy example copies a rectangular region of the framebuffer,
without moving any data in the localbuffer. The region extends from the origin
(0,0) to (100,100) and will be shifted right by 200 pixels. The destination
rectangle is scan converted.

// First set–up the framebuffer read mode

fbReadMode.ReadSource = TVP4010_ENABLE

fbReadMode.ReadDestination = TVP4010_DISABLE

fbReadMode.DataType = TVP4010_FBDEFAULT

FBReadMode(fbReadMode) // Update register

// Now enable framebuffer write

fbWriteMode.WriteEnable = TVP4010_ENABLE

FBWriteMode(fbWriteMode) // Update register

// Offsets. No Pixel offset, source offset of 200

FBPixelOffset (0x0)

FBSourceOffset (–200)

// All the tests which could remove the fragment must

// be disabled (Stipple, Stencil, Depth) except

// the Scissor test which is still needed for screen

// and possibly window clipping.

// If software writemasks are to be used then they are

// set appropriately, and the framebuffer set up to do

// extra read operation

// Disable the Color DDA unit, we do not want to

// associate a color with this fragment.

colorDDAMode.UnitEnable = TVP4010_FALSE

ColorDDAMode(colorDDAMode)

// Define the region we wish to copy from.

StartXDom (200<<16)

StartXSub (300<<16)

dXSub (0)

dXDom (0)

StartY (0)

dY (1<<16)

Count (100)

render.PrimitiveType = TVP4010_TRAPEZOID

Render (render) // Start the rasterization

Color DDA Unit

 4-68

4.11 Color DDA Unit

The Color DDA unit is used to associate a color with a fragment produced by
the Rasterizer. This unit should be enabled for rendering operations and
disabled for pixel rectangle operations (i.e., copies, uploads and downloads).

4.11.1 RGBA and Color–Index(CI) Modes

Two color modes are supported by the TVP4010, true color RGBA and color
index (CI).

The TVP4010 internal color representation is RGBA with 8 bits per component
as shown in Figure 4–36:

Figure 4–36. TVP4010 Color Representation

08162431

Alpha GreenBlue Red

This format is the same for all the different framebuffer configurations
supported. If the number of bits in the framebuffer for a color component is less
than eight, then the color value is left shifted into the most significant bits of that
components field. The unused least significant bits should be set to zero.

In CI mode, the color index is placed in the lower byte of the 32-bit register (i.e.,
the red component).

4.11.2 Gouraud Shading

When in Gouraud shading mode, the Color DDA unit performs linear
interpolation given a set of start and increment values. Clamping is used to
ensure that the interpolated value does not underflow or overflow the
permitted color range.

For a Gouraud shaded trapezoid, the TVP4010 interpolates from the dominant
edge of a trapezoid to the subordinate edges. This means that two increment
values are required per color component, one to move along the dominant
edge and one to move across the span to the subordinate edge. This is
illustrated in the diagram of Figure 4–37, where C represents a color
component (red, green, blue or color index). Alpha is not interpolated and
stays at its initial value.

Color DDA Unit

4-69Graphics Programming

Figure 4–37. Color Interpolation

dC d y D o m d C dX

S u b ord in ate E dg es

D o m in an t E d g e

CStart = the initial color value

dCdyDom = color gradient in the Y direction along the
dominant edge

dCdx = color gradient in the X direction

See section 4.2, for the delta values for a Gouraud Shaded Triangle.

For Gouraud shaded lines, each line is treated as the dominant edge of a
trapezoid, and so no dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a 17-bit
fixed point format. The format is 2s complement with 1-bit sign, 5 bits integer
and 11 bits fraction as shown in Figure 4–38:

Figure 4–38. Fixed Point Color Format

08162431

Not used Not usedInteger Fraction

Sign bit

Note that if you are rendering to multiple buffers and have initialized the start
and increment values in the Color DDA unit, then any subsequent Render
command will cause the start values to be reloaded.

If subpixel correction has been enabled for a primitive, then any correction
required will be applied to the color components.

4.11.3 Flat Shading

In flat shading mode, a constant color is associated with each fragment. This
color is loaded into the ConstantColor register which has the format shown
previously in Figure 4–36.

Color DDA Unit

 4-70

4.11.4 Registers

The main control register for the Color DDA unit is the ColorDDAMode register,
see Figure 4–39.

Figure 4–39. ColorDDAMode Register

08162431

Reserved

Unit EnableShading Mode

The registers to set up Gouraud shading in the Color DDA unit are as shown
in Table 4–16.

Table 4–16. Color Interpolation Registers

Register Data Field Description

RStart 17 bit 2s comp fix pt Red start value

dRdx 17 bit 2s comp fix pt Red derivative per unit X

dRdyDom 17 bit 2s comp fix pt Red derivative per unit Y, dominant edge

GStart 17 bit 2s comp fix pt Green start value

dGdx 17 bit 2s comp fix pt Green derivative per unit X

dGdyDom 17 bit 2s comp fix pt Green derivative per unit Y, dominant edge

BStart 17 bit 2s comp fix pt Blue start value

dBdx 17 bit 2s comp fix pt Blue derivative per unit X

dBdyDom 17 bit 2s comp fix pt Blue derivative per unit Y, dominant edge

AStart 17 bit 2s comp fix pt Alpha start value

4.11.5 Flat Shading Example

The pseudocode for a flat shaded primitive example follows:

// Set DDA to flat shade mode

colorDDAMode.UnitEnable = TVP4010_ENABLE

colorDDAMode.Shade = TVP4010_FLAT_SHADE_MODE

ColorDDAMode(colorDDAMode)

ConstantColor(0xFFFFFFFF)// Load the flat color

Color DDA Unit

4-71Graphics Programming

4.11.6 Gouraud Shaded Trapezoid Example

See subsection 4.2.3 for details of how to calculate delta values.

// Enable unit in Gouraud shading mode

colorDDAMode.UnitEnable = TVP4010_ENABLE

colorDDAMode.Shade = TVP4010_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Load the color start values and deltas for dominant

// edge and the body of the trapezoid

RStart() // Set–up the red component start value

dRdx() // Set–up the red component increments

dRdyDom()

GStart() // Set–up the green component start value

dGdx() // Set–up the green component increments

dGdyDom()

BStart() // Set–up the blue component start value

dBdx () // Set–up the blue component increments

dBdyDom ()

4.11.7 Gouraud Shaded Line Example

See section 4.2.3 for details of how to calculate delta values.

// Set DDA for Gouraud shaded mode

colorDDAMode.UnitEnable = TVP4010_ENABLE

colorDDAMode.Shade = TVP4010_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// For lines we need only start values and dominant

// edge deltas

RStart() // Set–up the red component start value

dRdyDom() // Set–up the red component increment

GStart() // Set–up the green component start value

dGdyDom() // Set–up the green component increment

BStart() // Set–up the blue component start value

dBdyDom() // Set–up the blue component increment

Texture/Fog/Blend

 4-72

4.12 Texture/Fog/Blend

The Texture/Fog/Blend unit applies effects to the interpolated color. The
effects are applied in the order: texture then fog then blend.

4.12.1 Texture Application

There are two major types of texture application, one suitable for RGB
applications and one suitable for Ramp applications; Ramp applications use
RGB textures and framebuffer format but are limited to a white-light source.
The enable bit in the TextureColorMode register and the TextureEnable bit in
the Render register must both be enabled before texture is applied.

4.12.2 RGB Texture Application

The RGB texture application is referred to elsewhere as the OpenGL type of
texture application. It can be done in one of three ways.

In copy mode, the texture color replaces the current fragment color.

In decal mode the texture color is blended with the fragment color using the
texture alpha value:

Cf = C t At + C f (1–A t)
Af = A f

where: Cf is the fragment color, Ct is the texture color , Af fragment alpha and
At is the texture alpha. If the texture alpha value is one, decal becomes the
same as copy.

In modulate mode the color components are multiplied together:

Cf = C t Cf

Af = A t Af

where: Cf is the fragment color, Ct is the texture color, Af fragment alpha and
At is the texture alpha.

4.12.2.1 Ramp Texture Application

The texture application is referred to elsewhere as the Apple type of texture
application because of the approach adopted by QuickDraw3D. This type of
texture application is done three stages, where each stage can be
independently enabled or disabled. The first stage is decal, which does the
operation:

Cf = C t At + C f (1–A t)

Af = A f

Texture/Fog/Blend

4-73Graphics Programming

If decal is not enabled then the following operation is done:

Cf = C t

Af = A t Af

The next operation is modulate, which does:

Cf = K dCD

Af = K dAD

where: Cf is the fragment color, Kd is an interpolated parameter which
represents the diffuse light intensity, At is the texture alpha, CD is the color after
the decal operation and AD is the alpha value after the decal operation.

The next operation is highlight:

Cf = C M+Ks

Af = A M+Ks

where: Cf is the fragment color, Ks is an interpolated parameter which
represents the specular or highlight intensity, At is the texture alpha, CM is the
color after the modulate operation and AM is the alpha value after the modulate
operation.

4.12.3 Fog Application

The fog unit is used to combine the incoming fragment color (generated by the
Color DDA unit, and potentially modified by the texture unit) with a pre-defined
fog color. Fogging can be used to simulate atmospheric fogging and used also
to depth-cue images.

Fog application has two stages; derivation of the fog index for a fragment, and
application of the fogging effect. The fog index is a value which is interpolated
over the primitive using a DDA in the same way color and depth are
interpolated. The fogging effect is applied to each fragment using the equation
described below.

Note that although the fog values are linearly interpolated over a primitive. the
fog values at each vertex can be calculated on the host using a linear fog
function (typically for simple fog effects and depth-cueing) or a more complex
function to model atmospheric attenuation. This might be an exponential
function.

A fog test is supported that will reject a fragment if its fog value is negative. This
may be used if the background of the scene has been cleared to the fog color;
any pixels that are far enough from the eye to be completely fogged need not
be plotted.

The enable bit in the FogMode register and the FogEnable bit in the Render
register must both be enabled before fog will be applied.

Texture/Fog/Blend

 4-74

4.12.4 Fog Index Calculation – The Fog DDA

The fog DDA is used to interpolate the fog index (F) across a primitive. For a
fogged trapezoid, the TVP4010 interpolates from the dominant edge of a
trapezoid to the subordinate edges. This means that two increment values are
required, one to move along the dominant edge and one to move across the
span to the subordinate edge. This is illustrated in the diagram below. The
rendering direction chosen here is bottom to top.

FStart = Start fog value

dFdyDom = Increment along dominant edge.

dFdx = Increment along the scan line.

The dFdx value is not required for fogged lines.

The mechanics are similar to those of the other DDA units, as shown in Figure
4–40:

Figure 4–40. Fog Interpolation Over A Triangle

Subordinate Edges

dFdyDom

Dominant Edge

dFdX

where:

FStart = initial fog value.

dFdx = Fog gradient in the X direction.

dFdyDom = Fog gradient along the dominant edge of a
primitive.

Note that for fogged lines the dFdx delta is not required.

The fog index is specified as an 18-bit fixed point value. The format is 2s
complement with 2 bits integer and 16 bits fraction, see Figure 4–41.

Texture/Fog/Blend

4-75Graphics Programming

Figure 4–41. Fog Interpolant Fixed Point Format

08162431

Not used Not used

Integer

Fraction

Sign bit

The fog DDA calculates a fog index value which is clamped to lie in the range
0.0 to 1.0 before it is used in the following fogging equations.

4.12.5 Fogging Equation

The fogging equation is:

C = fC i + (1–f)C f

where:

C = outgoing fragment color

Cf = fog color

Ci = incoming fragment color

f = fog index

The equation is applied to the color components, red, green and blue; alpha
is not modified. Figure 4–42 shows how the fogging would typically affect a
scene. Initially no fogging occurs, f >=1.0, then a region of linear combination
of the fragment color and fog color occurs 1.0 < f > 0.0, followed by a region
of constant fog color, f <= 0.0.

Texture/Fog/Blend

 4-76

Figure 4–42. Fogging

0

F og I ndex (f)

1.0

C =C i

C =C f

C =f C i + (1–f)C f

Fragment Color Linear Fogging Range Fogged Color

Increasing Screen Depth

4.12.6 Alpha Blending

Two types of alpha blending are supported, one that is common to RGB and
Ramp applications, and one that is specific to Ramp applications. Alpha
blending combines the fragment color, potentially after texture and fog have
been applied, with that stored in the framebuffer.

Data from the framebuffer is in the raw format, so it must be converted to the
internal format before the blend can be done. This is achieved by setting the
ColorFormat and ColorFormat Extension fields in the AlphaBlendMode
register.

In some situations blending is desired when no retained alpha buffer is pres-
ent. In this case, the alpha value which is considered to be read from the frame-
buffer will be set to 1.0. The NoAlphaBuffer bit in the AlphaBlendMode register
controls this.

4.12.6.1 Common Blend Mode

The common blend operation is defined as:

Co = C sAs+ C d(1–A s)

where: Co is the output color, Cs is the source color , As is the source alpha
and Cd is the destination color read from the framebuffer. Setting the Operation
field to Blend in the AlphaBlendMode register achieves this.

Texture/Fog/Blend

4-77Graphics Programming

See The OpenGL Reference Manual and The OpenGL Programming Guide
from Addison-Wesley for more details on this style of alpha blending.

4.12.7 Ramp Blend Mode

The alternative blend mode is called PreMult and does the operation:

Co = C s+ C d(1–A s)

4.12.8 Image Formatting

The Alpha Blend and Color Format units can be used to format image data into
any of the supported the TVP4010 framebuffer formats.

Consider the case where the framebuffer is in RGBA 5.5.5.1 mode, and an
area of the screen is to be uploaded and stored in an 8-bit RGB 3:3:2 format.
The sequence of operations is:

� Set the Rasterizer as appropriate (see subsection 4.3.9)

� Enable framebuffer reads

� Disable framebuffer writes and set the UpLoadData bit in the FBWrite-
Mode register

� Enable the Alpha Blend unit, set the operation to Format (assuming no
alpha blending is needed) and set the color mode to RGBA 5.5.5.1. This
can all be achieved by setting the appropriate fields in the AlphaBlend-
Mode register.

� Set the Color Format unit to format the color of incoming fragments to an
8-bit RGB 3:3:2 framebuffer format.

The upload now proceeds as normal. This technique can be used to upload
data in any supported format.

The same technique can be used to download data which is in any supported
framebuffer format. In this case the Rasterizer is set to synchronize with
FBData (rather than Color), framebuffer writes are enabled and the
UpLoadData bit cleared.

4.12.9 Registers

The TextureColorMode register (see Figure 4–43) is used to enable and
disable texturing (qualified by the texture application bit in the Render
command register). The KsDDA and KdDDA bits enable the internal DDAs
and should be set for modulate or highlight Ramp texture application modes.

Texture/Fog/Blend

 4-78

The Texture Type field differentiates between Ramp and RGB application
modes. Combinations of decal, modulate and highlight are supported with
Ramp Application Mode.

Figure 4–43. TextureColorMode Register

08162431

Reserved

KsDDA

KdDDA
Texture Type

Application Mode

Enable Texture

The Texel0 register holds the texture value. This may be loaded automatically
by the Texture Read unit, or supplied from the host for a procedural texture.
Figure 4–44 and Figure 4–45 show texture values in RGB and YUV formats
respectively. This register is also used to hold the background color for the bit-
mask and stipple tests. If the tests fail then this color can be used in place of
that from the Color DDA unit.

Figure 4–44. Texel0 Register – RGB format

08162431

Alpha GreenBlue Red

Figure 4–45. Texel0 Register – YUV format

08162431

Alpha GreenBlue Red

The six registers: KsStart, dKsdx, dKsdyDom, KdStart, dKddx and dKddyDom
hold the start, dx and dyDom parameters for Ks and Kd. The format is 2s
complement 2.16 fixed point format (1 bit sign, 1 bit integer, 16 bits fraction)
with an effective range of ±1.999. The values of Ks and Kd at each vertex are
used to calculate the gradient values in much the same way as the Z gradients,
when interpolating depth (see subsection 4.2.5).

The FogMode register (see Figure 4–46) is used to enable and disable fogging
(qualified by the fog application bit in the Render command register). Setting

Texture/Fog/Blend

4-79Graphics Programming

Fog Test causes fragments with negative fog values to be rejected as
described in subsection 4.12.2.

Figure 4–46. FogMode Register

08162431

Reserved

Fog Test
Reserved

Fog Enable

Additional fog registers are, FogColor, which holds the fog color in the standard
color format. FStart, dFdx & dFdyDom which control the fog DDA and are
formatted in 2s complement 2.16 fixed-point format as described previously.

Blending is controlled by the AlphaBlendMode register as shown in Figure
4–47.

Figure 4–47. AlphaBlendMode Register

08162431

Reserved

Blend Type

ColorOrder NoAlphaBuffer
AlphaBlendEnableReserved

ColorFormatExtension

The color format and order is needed as the destination color is read from the
framebuffer and needs to be converted into the internal the TVP4010
representation; it should therefore be set as appropriate for the framebuffer.
The operation can be either format, blend, or PreMult.

4.12.10 Texture Application Example

The following pseudocode is an example of a texture mapped trapezoid:

// Set–up Texture/Fog/Blend unit

textureColorMode.Enable = TVP4010_TRUE

textureColorMode.ApplicationMode = TVP4010_TEXTURE_MOD-
ULATE

TextureColorMode(textureColorMode)

Texture/Fog/Blend

 4-80

// Render with texture enabled in render command

// render.TextureEnable = TVP4010_TRUE

4.12.11 FogExample

A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white.
See subsection 4.2.5 for details of how to calculate depth delta values – fog
values are calculated in a similar way.

// Enable the Color DDA unit in Gouraud shading mode

colorDDAMode.UnitEnable = TVP4010_ENABLE

colorDDAMode.Shade = TVP4010_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Enable the Fog unit

fogMode.FogEnable = TVP4010_TRUE

FogMode(fogMode)

// Set the fog color to white

FogColor(0xFFFFFFFF)

// Load the color start values and deltas for dominant
edge

// and the body of the trapezoid

RStart() // Set–up the red component start value

dRdx() // Set–up the red component increments

dRdyDom()

GStart() // Set–up the green component start value

dGdx() // Set–up the green component increments

dGdyDom()

BStart() // Set–up the blue component start value

dBdx () // Set–up the blue component increments

dBYDom()

// Load the start value and delta for dominant edge

// and the body of the trapezoid

// Note that the fog deltas are calculated in the same

// way as the color deltas

FStart() // Set–up the fog component start value

dFdx() // Set–up the fog component increments

dFdyDom()

// When issuing a Render command the FogEnable bit

// should be set in addition to the fog unit being

// enabled:

// render.FogEnable = TVP4010_TRUE

Color Format Unit

4-81Graphics Programming

4.13 Color Format Unit

The Color Format unit converts from the TVP4010 internal color
representation to a format suitable to be written into the framebuffer. This
process may optionally include dithering of the color values. If the unit is
disabled, the color is not modified in any way.

4.13.1 Color Formats

The framebuffer may be configured to be RGBA or Color Index (CI). Table 3.1
shows the full list of color modes supported by the TVP4010. The R, G, B and
A columns show the width of each color component. The least significant bit
position is 0. For the Front and Back Modes the value is repeated in both
buffers, and writemasks may be used to update only one buffer. In CI mode,
the index is repeated in all streams.

4.13.2 Color Dithering

The TVP4010 uses an ordered dither algorithm to implement color dithering.
It also has a line dither mode which uses a different algorithm which generally
gives better results for lines because it is independent of orientation. This
mode is not available for trapezoids.

If the Color Format unit is disabled, the color components RGBA are not
modified and is truncated when placed in the framebuffer. In CI mode, the
value is truncated to the nearest integer. In both cases the result is clamped
to a maximum value to prevent overflow.

The TVP4010 supports 8:8:8:8 RGBA format for 2d operations only. When this
mode is selected and dithering is enabled, it results in 5.5.5.1RGBA quality for
each 32-bit pixel. This can be used when the window manager needs to be set
up for true color at the same time as 3D windows are required.

In some situations only screen coordinates are available, but window relative
dithering is required. This can be resolved by setting up the optional X and Y
offsets which get added to the coordinates before the dither tables are
indexed. Each offset is a 2-bit number which is supplied for each coordinate.
The XOffset and YOffset fields in the DitherMode register control this operation
and should be set to zero if window relative coordinates are used.

4.13.3 ForceAlpha

The Color Format unit can force the alpha value to be either 0 x 0 or the
maximum 0xF8, or leave it unchanged. This can be used to implement
overlays. See section 6.6 for a detailed description.

Color Format Unit

 4-82

4.13.4 Registers

One register controls the operation of this unit, DitherMode, and its layout is
shown in Figure 4–48:

Figure 4–48. DitherMode Register

08162431

Reserved

ForceAlpha

ColorOrder

DitherMethod Unit EnableReserved

ColorFormatExtension Dither enableX offset

Y offset

Color format

The X and Y offset fields are for window relative dithering. Color order specifies
RGB or BGR color order. The Color format and Color format extension fields
control color depth and options are given in Table 4–1.

4.13.5 Dither Example

To set the framebuffer format to RGB 3:3:2 and enable dithering:

// 332 Dithering

ditherMode.UnitEnable = TVP4010_TRUE

ditherMode.DitherEnable = TVP4010_TRUE

ditherMode.ColorMode = TVP4010_COLOR_FORMAT_RGB_332

DitherMode (ditherMode) // Load register

4.13.6 3:3:2 Color Format Example

To set the framebuffer format to RGB 3:3:2 and disable dithering:

// 332 No Dither

ditherMode.UnitEnable = TVP4010_TRUE

ditherMode.DitherEnable = TVP4010_FALSE

ditherMode.ColorMode = TVP4010_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

4.13.7 8:8:8:8 Color Format Example

To set the framebuffer to RGBA 8:8:8:8 and not dithered:

Color Format Unit

4-83Graphics Programming

// 8888 Dithered (No effect as 8 bit components are

// not dithered)

ditherMode.UnitEnable = TVP4010_TRUE

ditherMode.DitherEnable = TVP4010_FALSE

ditherMode.ColorMode = TVP4010_COLOR_FORMAT_RGBA_8888

DitherMode(ditherMode) // Load register

Logical Op Unit

 4-84

4.14 Logical Op Unit

The Logical Op unit performs three functions:

� optional control of a special the TVP4010 mode that allows high-
performance flat-shaded rendering.

� logic operations between the fragment color (source color) and a
value from the framebuffer (destination color)

� software writemasking

4.14.1 High Speed Flat Shaded Rendering

A special the TVP4010 rendering mode is available that allows high speed
rendering of unshaded images. Note this method is not as fast as block fills but
is less restrictive. To use the mode, the following constraints must be satisfied:

� Flat shaded primitive

� No dithering required

� No logical ops

� No stencil or depth testing required

� No alpha blending

The following are available:

� Bit masking in the Rasterizer

� Area and line stippling

� User and Screen Scissor test

If all the conditions are met, then high speed rendering can be achieved by
setting the FBWriteData register to hold the framebuffer data (in raw
framebuffer format) and setting the UseConstantFBWriteData bit in the
LogicalOpMode register. All unused units should be disabled.

This mode is most useful for 2D applications or for clearing the framebuffer
when the memory does not support block writes. Note that FBWriteData
register should be considered volatile when context switching.

Logical Op Unit

4-85Graphics Programming

4.14.2 Logical Operations

The logical operations supported by the TVP4010 are listed in Table 4–17.

Table 4–17. Logical Operations

Mode Name Operation

0 Clear 0

1 And S & D

2 And Reverse S & ~D

3 Copy S

4 And Inverted ~S & D

5 No–op D

6 Xor S ^ D

7 Or S | D

8 Nor ~(S | D)

9 Equivalent ~(S ^ D)

10 Invert ~D

11 Or Reverse S | ~D

12 Copy Invert ~S

13 Or Invert ~S | D

14 Nand ~(S & D)

15 Set 1

Where: S = Source (fragment) Color, D = Destination (framebuffer) Color

For correct operation of this unit in a mode that takes the destination color,
configure the TVP4010 to allow reads from the framebuffer using the
FBReadMode register. See section 4.10 for more details.

The TVP4010 makes no distinction between RGBA and CI modes when
performing logical operations. However, logical operations are generally only
used in CI mode.

4.14.3 Software Writemasks

Software writemasking is normally implemented only when Hardware
writemasking is unavailable. It is controlled by the FBSoftwareWriteMask
register. The data field has one bit per framebuffer bit that when set, allows the
corresponding framebuffer bit to be updated. When reset, it protects the bit
from being written. Software writemasking is applied to all fragments and is not
controlled by an enable/disable bit. However, it may effectively be disabled by

Logical Op Unit

 4-86

setting the mask to all ones. If the mask is not all ones, the ReadDestination
bit must be enabled in the FBReadMode register to correctly use software
writemasks. See the Framebuffer Read/Write section for details of how to
enable/disable framebuffer reads.

The software writemask MUST be set to all ones, except when software write-
masking is explicitly required.

4.14.4 Registers

The operation of the unit is controlled by the LogicalOpMode register as shown
in Figure 4–49.

Figure 4–49. LogicalOpMode Register

08162431

Reserved

Logical Openable

UseConstantFBWriteData

LogicOp

4.14.5 XOR Example

To set the logical operation to XOR:

// Set framebuffer to allow reads

// Not shown

logicalOpMode.UnitEnable = TVP4010_ENABLE

logicalOpMode.LogicalOp = TVP4010_LOGICOP_XOR

LogicalOpMode(logicalOpMode)// Load register

4.14.6 Software Writemask Example

To set the logical operation to COPY, enable the software writemask, and write
to the green component in an-8bit framebuffer configured in 3:3:2 RGB mode:

// Set framebuffer to allow reads

// Not shown

ditherMode.UnitEnable = TVP4010_ENABLE

ditherMode.DitherEnable = TVP4010_ENABLE

ditherMode.ColorMode = TVP4010_COLOR_FORMAT_RGB_332

Logical Op Unit

4-87Graphics Programming

DitherMode(ditherMode)// Load register

logicalOpMode.UnitEnable = TVP4010_ENABLE

logicalOpMode.LogicalOp = TVP4010_LOGICOP_COPY

LogicalOpMode(logicalOpMode)// Load register

FBSoftwareWriteMask(0xFFFFFFE3)

Host Out Unit

 4-88

4.15 Host Out Unit

The Host Out Unit controls which registers are available at the output FIFO,
gathers statistics about rendering operations (picking and extent testing) and
controls synchronization of the TVP4010 with the host.

4.15.1 Filtering

Filtering controls the data made available at the output FIFO. There are the
following categories:

� Depth, Stencil, Color: These are data values associated with a fragment
which has been read from the localbuffer or framebuffer, or generated
using the UpLoadData flag in the Framebuffer Write Unit. This category
is normally associated with uploading data to the host.

� Synchronization: A single register, Sync, which is used to synchronize the
TVP4010 and flush the graphics pipeline.

� Statistics: The registers associated with extent checking and picking.

The filtering is controlled by the FilterMode register which has 2-bit fields for
each category. These fields select whether the register tag and/or register data
are passed to the output FIFO. The format of the FilterMode register is shown
in Table 4–18.

Host Out Unit

4-89Graphics Programming

Table 4–18. Filter Modes

Register Category Tag Con-
trol Bit

Data
Control

Bit

Description

Reserved 0 1

Reserved 2 3

Depth 4 5 This is the data from image upload of the Depth (Z)
buffer.

Stencil 6 7 This is the data from image upload of the Stencil buffer.

Color 8 9 This is the data from image upload of the Framebuffer
(FBColor).

Synchronization 10 11

Statistics 12 13 This is the data generated following a command to read
back the results of the statistic measurements:
PickResult, MaxHitRegion, MinHitRegion

Reserved 14 15

Note that the filter unit must be set appropriately before any synchronization
can take place.

4.15.2 Statistic Operations

There are two statistic collection modes of operation; picking and extent
checking. Picking is normally used to select drawn objects or regions of the
screen. Typically, extent checking is used to determine the bounds within
which drawing has occurred so that a smaller area of the framebuffer can
subsequently be cleared.

Statistic collection is controlled using the StatisticMode register.

4.15.2.1 Picking

In picking mode, the active and/or passive fragments have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegion registers. If the result is true, then the PickResult flag is set, other-
wise it holds its previous state. The compare function can be either Inside or
Outside. Before picking can start, the ResetPickResult register must be
loaded to clear the PickResult flag.

The MinRegion and MaxRegion registers are loaded to select the region of
interest for picking. A coordinate is inside the region if:

Xmin ≤ X < X max

Ymin ≤ Y < Y max

Host Out Unit

 4-90

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the one
used in the scissor tests.

The following stages are required for picking:

1) load ResetPickResult, MinRegion and MaxRegion registers

2) Set up the FilterMode to allow statistic commands out of the TVP4010

3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO waiting for the PickResult to have passed through the
TVP4010.

Block fills are ignored by the picking operation.

4.15.2.2 Extent Checking

In extent mode, active and/or passive fragments have their associated XY
coordinates compared to the MinRegion and MaxRegion registers and if found
to be outside the defined rectangular region, then the appropriate register is
updated with the new coordinate(s) to extend the region. The Inside/Outside
bit has no effect in this mode. Block fills are included in the extent checking if
the StatisticMode register is set to include spans.

The MinRegion and MaxRegion registers are loaded to select the maximum
value (MinRegion) and minimum value (MaxRegion) for extent checking. A
coordinate is inside the region if:

Xmin ≤ X < X max

Ymin ≤ Y < Y max

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the one
used in the scissor tests.

Once all the necessary primitives have been rendered, the results can be
found using the MinHitRegion and MaxHitRegion commands, that cause the
contents of the MinRegion and MaxRegion registers respectively to be written
into the output FIFO (under control of the FilterMode register).

4.15.3 Synchronization

The Sync command register provides a means of ensuring that the TVP4010
has completed all outstanding actions such as localbuffer and framebuffer

Host Out Unit

4-91Graphics Programming

accesses. Sync is filtered and written to the output FIFO in a manner similar
to that for the other registers. The host can either poll for Syncs by reading the
output FIFO or await a Sync interrupt.

If generation of an interrupt is required, then the most significant bit of the Sync
command register must be set, and the filtering must be set up to at least allow
the Sync to be written into the FIFO. If the FilterMode is set up so the Sync is
not written to the FIFO, then Sync interrupts will not be generated. The actual
interrupt will not occur until the Sync data or tag has passed through the
TVP4010 and is on the output of the FIFO. This to allow low level
resynchronization between the graphics core and PCI clock domains. The
FIFO has an extra bit in width to accommodate the interrupt signal. When both
the data and tag are written into the FIFO, only the first entry in the FIFO will
cause the interrupt (assuming an interrupt was requested).

The remaining bits in the Sync data field are free and can be used by the host
to identify the reason for the Sync.

4.15.4 Registers

Filtering is controlled by the FilterMode register as shown Figure 4–50.

Figure 4–50. FilterMode Register

08162431

Reserved Individual bits defined above

Statistic collection is controlled by the StatisticMode register as shown Figure
4–51.

Figure 4–51. StatisticMode Register

08162431

Reserved

Statistics Type

Enable Statistics

Compare Function

Monitor Pixels Written

Include Spans

Monitor Culled Fragments

The Include-Spans bit allows control over whether or not block fills are
included in the returned information.

Host Out Unit

 4-92

ResetPickResult is used to clear the pick flag, see Figure 4–52. The data field
for this register is unused.

Figure 4–52. PickResult Register

08162431

Reserved

Pick Flag

MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The
format is 16-bit 2s complement numbers with Y in the most significant part and
X in the least significant part of the word.

Setting the most significant bit of the Sync register will request a Sync interrupt.
Bits 0–30 are available for the user.

4.15.5 Filter Mode Example

The following pseudocode implements an example filter mode:

// Set up Filter mode to only permit read back of

// synchronization tag and data

FilterMode(0x0C00) // Set bits 10 & 11

4.15.6 Picking Example

Set the statistic mode to picking and detect any active fragments in the region
0x0 <= x < 0x100, 0x0 <= y < 0x100. Render some primitives, then read back
the results.

// Set filter mode as above

FilterMode(0x0C00) // Set bits 10 & 11

// Set statistic mode

MinRegion(0)

MaxRegion(0x100 | 0x100 << 16)

// Clear the picking flag

ResetPickResult(0x0) // Data not used

// Now render primitives.... ...

Host Out Unit

4-93Graphics Programming

Render (render) // All units set as appropriate

// All rendering finished.

// Set the filter mode to allow read back of Syncs and

// statistic information (tag and data)

FilterMode(0x3C00) // Set bits 10 to 13

// Write to the PickResult register

PickResult(0x0) // Data not used

// Now read the PickResult from the output FIFO (not
shown)

4.15.7 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data
(0x34) in the lower 31 bits of the Sync register.

// Set up Filter mode to only permit read back of

// synchronization tag and data

FilterMode(0x0C00) // Set bits 10 & 11

// Write to the Sync register with the top bit (bit 31)
set and

// user data encoded into the lower bits (0–30)

sync = (0x1 << 31) | (0x34 & 0x7FFFFFFF)

Sync(sync)

// Now wait for the sync interrupt. Not shown.

Host Out Unit

 4-94

5-1

Initialization

This chapter outlines the requirements for initializing the TVP4010.

Topic Page

5.1 Initializing the TVP4010 5-2.

5.2 System Initialization 5-3.

5.3 Window Initialization 5-7.

5.4 Application Initialization 5-10.

5.5 Bypass Initialization 5-11.

Chapter 5

Initializing the TVP4010

 5-2

5.1 Initializing the TVP4010

This section describes how to initialize the TVP4010 following reset and prior
to carrying out rendering operations.

Initialization falls broadly into three areas, though in different systems precise
responsibilities can vary:

� System initialization covers the setting up of the PCI bus, memory and
video output. This information typically is only initialized once following
reset.

� Window initialization, also referred to as context initialization, covers the
setting of the base address of the current rendering window and its color
format. This must occur at reset, but will need updating each time the
TVP4010 starts drawing to a new window.

� Application initialization covers those states that are typically dynamic;
enabling and disabling depth testing are examples. Again the application
state must be set at reset, but is likely to be updated relatively frequently.

To make use of the full functionality of the TVP4010, consult the relevant
sections in chapter 4 Graphics Programming. Examples are given which make
use of the pseudocode conventions given in Appendix B.

Note that in general the graphics registers (those listed in Appendix A, as
opposed to those documented in the Data Manual) are not hardware initialized
to specific values at reset. In the examples that follow, it is assumed that the
data structures used to load these registers are initialized to zero. Thus, bit
fields that are not set explicitly, will default to zero.

System Initialization

5-3Initialization

5.2 System Initialization

5.2.1 PCI

There are a set of PCI related registers which can be interrogated for
information about the chip, for example its revision and device ID. Some of
these PCI related registers will need to be set up at reset, for instance to
configure the base addresses of the different memory regions of the chip. For
more details refer to the TVP4010 Data Manual and the PCI Local Bus
Specification, Revision 2.1.

5.2.2 Memory Configuration

The memory interface control registers should be programmed to reflect the
type and amount of memory fitted. The registers are specified in the TVP4010
Hardware Reference Manual.

5.2.3 SVGA and Internal Video Timing Registers

Details for programming the SVGA registers can be found in the TVP4010
Data Manual.

The core video timing generator should be programmed to reflect the timings
of the monitor being used and the screen resolution and color depth. Note that
there is also a SVGA video timing register(VTR) and care must be taken to
ensure the correct one is enabled at the right time. To change from SVGA to
core display mode, two stages are required. Firstly, the core VTR must be set
up and then VGAControlReg must be loaded (the EnableVGADisplay bit set
to 0).

Details of programming the registers for both VTRs can be found in the
TVP4010 Data Manual.

5.2.4 Screen Width

The width of the screen is initialized by setting the three partial products fields
in the FBReadMode, LBReadMode and TextureMapFormat registers. Note
that the width is in pixels, not in bytes, so the same values apply regardless
of framebuffer depth, for a given screen resolution. A full list is given in
Appendix C.

To initialize the screen to be 1024 pixels wide, set the registers as follows.

fbReadMode.PP0 = 5

fbReadMode.PP1 = 5

System Initialization

 5-4

fbReadMode.PP2 = 4

FBReadMode(fbReadMode)

lbReadMode.PP0 = 5

lbReadMode.PP1 = 5

lbReadMode.PP2 = 4

LBReadMode(lbReadMode)

textureMapFormat.PP0 = 5

textureMapFormat.PP1 = 5

textureMapFormat.PP2 = 4

TextureMapFormat(textureMapFormat)

Note that the TVP4010 supports a maximum screen resolution of 1536 in width
and 1024 in height.

5.2.5 Screen Clipping Region

The TVP4010 supports a screen scissor clip which should be set at system
initialization, and a user scissor clip which should initially be disabled.
Assuming that the FBWindowBase and LBWindowBase registers are set
appropriately, then setting the screen clip prevents writing outside the
framebuffer memory (and localbuffer), which could have undesirable results.
The following example would be appropriate for a resolution of 1024 � 768
pixels:

screenSize.X = 1024

screenSize.Y = 768

ScreenSize(ScreenSize)

scissorMode.ScreenScissorEnable = TVP4010_ENABLE

scissorMode.UserScissorEnable = TVP4010_DISABLE

ScissorMode(ScissorMode)

5.2.6 Localbuffer and Framebuffer Configuration

Since the TVP4010 supports a unified memory architecture, it must be
decided how the memory is to be partitioned between framebuffer, localbuffer
and texture memory. A typical configuration might be to allocate two screen
sized buffers: one for the visible screen, the other for the 3D back buffer. Then
allocate a localbuffer: this is always 16 bits per pixel; and allow the remainder
to be used for texture memory. The localbuffer and texture memory can be
considered to have different shapes to the front and back buffers. For example,
suppose that a screen resolution of 800 x 600 at 8 bits per pixel is required,

System Initialization

5-5Initialization

then the following offsets could be used. Each offset is a count in pixels from
the start of memory.

Front buffer: pixel offset 0

Back buffer: pixel offset 480000 (= 600*800 bytes)

Local buffer: pixel offset 480000 (offset in 16 bit pix-
els)

Texture memory: byte offset 1920000 (= 2*600*800 +
600*800*sizeof (USHORT))

The size of the pixel depends on the buffer being considered. Hence the offset
to the back buffer and the localbuffer appear to be the same but one is
measured in bytes, the other in shorts.

These offsets should be saved as software copies to used as required. For
example, to select the front buffer for rendering, the FBPixelOffset register
would be set to 0; to select the back buffer it would be set to the Back buffer
pixel offset. The localbuffer offset should be added to the window base offset
whenever the LBWindowBase register is updated. The value loaded into the
TextureBaseAddress is a count of the number of texels from the start of
memory. Thus the byte offset should be modified to be a texel count when
used. In practice, some sort of texture allocation scheme will be needed where
textures are allocated starting at the texture memory offset. The final value
loaded into the TextureBaseAddress register will be the texture memory offset
+ offset to the required texture with the final value converted to a texel count
from the start of memory.

The TVP4010 supports a range of localbuffer configurations. During
initialization, fields in the LBWriteFormat and LBReadFormat registers should
be set to appropriate values. For example:

lbReadFormat.DepthWidth = 3 // 15 bit depth buffer

lbReadFormat.StencilWidth = 3 // 1 bit stencil

LBReadFormat(lbReadFormat)

lbWriteFormat.DepthWidth = 3 // 15 bit depth buffer

lbWriteFormat.StencilWidth = 3 // 1 bit stencil

LBWriteMode(lbWriteFormat)

Note it is possible to dynamically change the number of bits allocated to the
depth and stencil buffers, for instance on a per window basis.

Set the framebuffer and localbuffer read units to their default data sources:

fbReadMode.DataType = TVP4010_FBDATA

FBReadMode(fbReadMode)

System Initialization

 5-6

lbReadMode.DataType = TVP4010_LBDEFAULT

LBReadMode(lbReadMode)

The following registers are typically only needed for certain specialized
operations. Normally their offsets will be zero.

FBSourceOffset(0)

FBPixelOffset(0)

LBSourceOffset(0)

5.2.7 Host Out Unit

Under some circumstances it is necessary to synchronize with the TVP4010.
This is controlled through the Sync command. The host out FIFO should
normally be initialized so as to output the Sync tag and data (they can be
filtered out).

In addition the host out unit should normally be set to filter out all other output
data, otherwise the host software must regularly poll the output FIFO to keep
it drained and prevent it freezing the pipeline. For example:

filterMode.Depth = TVP4010_NULL

filterMode.Stencil = TVP4010_NULL

filterMode.Color = TVP4010_NULL

FilterMode.Synchronization = TVP4010_FILTER_TAG_AND_DATA

 // Allow Syncs through

filterMode.Statistics = TVP4010_NULL

FilterMode(filterMode)

5.2.8 Disabling Specialized Modes

Some operations should be disabled until they are need. See Chapter 4,
Graphics Programming for more details on their use.

window.LBUpdateSource = TVP4010_TRUE

window.ForceLBUpdate = TVP4010_FALSE

window.DisableLBUpdate = TVP4010_TRUE

Window(window)

Window Initialization

5-7Initialization

5.3 Window Initialization

The TVP4010 supports the concept of a window origin, and makes it relatively
simple to implement systems which allow different color formats to coexist in
different windows.

5.3.1 Color Format

The Color Format unit and the alpha blend unit should be initialized to an
appropriate color format at reset. The units support a variety of different
formats, listed in Table 3–1 of Chapter 3.

For example to render in 3:3:2, 8-bit color format, the following would be
needed:

ditherMode.ColorFormat = TVP4010_COLOR_FOR-
MAT_RGB_332_FRONT

DitherMode(ditherMode)

alphaBlendMode.ColorFormat = TVP4010_COLOR_FOR-
MAT_RGB_332_FRONT

AlphaBlendMode(alphaBlendMode)

To enable dithering use the following:

ditherMode.XOffset = 0

ditherMode.YOffset = 0

ditherMode.DitherEnable = TVP4010_ENABLE

ditherMode.UnitEnable = TVP4010_ENABLE

DitherMode(ditherMode)

Note that the Color Format unit is normally always enabled even if dithering
itself is not. This is because the unit handles color formatting as well as the
dithering operation.

5.3.2 Setting the Window Address and Origin.

The TVP4010 supports the concept of a current window origin. The origin of
the window can be specified either as being in the Top Left or Bottom Left
corner. This allows the user to pick the most appropriate coordinate system
to use; for 3D graphics it is typically bottom left, whereas for window systems
it is top left. Thus, for OpenGL set:

fbReadMode.WindowOrigin = TVP4010_BOTTOM_LEFT_WINDOW_ORI-
GIN

FBReadMode(fbReadMode)

Window Initialization

 5-8

lbReadMode.WindowOrigin = TVP4010_BOTTOM_LEFT_WINDOW_ORI-
GIN

LBReadMode(lbReadMode)

textureMapFormat.WindowOrigin = TVP4010_BOTTOM_LEFT_WIN-
DOW_ORIGIN

TextureMapFormat(textureMapFormat)

The window origin is set in the Scissor unit. This information usually is provided
by the window system. It will need updating if the window moves. As an
example, if the position of the window is (200, 600) (using a bottom left
coordinate system), the origin is specified as follows:

windowOrigin.X = 200

windowOrigin.Y = 600

WindowOrigin(windowOrigin)

The base address of the window must also be established in the localbuffer
read and framebuffer read units. The base address is the physical address that
represents the base address of the window. Assuming the base address of the
framebuffer represents the pixel in the top left corner of the screen, then for
the example above the actual physical address of the bottom left pixel of the
window will be set as follows:

fbWindowBase = fbBaseAddress +

 (fbWidth * (fbHeight–1–600) + 200)

FBWindowBase(fbWindowBase)

lbWindowBase = lbBaseAddress +

 (lbWidth * (lbHeight–1–600) + 200)

LBWindowBase(lbWindowBase)

Where fbBaseAddress, fbWidth and fbHeight are the physical base address,
width and height of the framebuffer (in pixels). fbBaseAddress and
lbBaseAddress will have been precomputed as described previously in
subsection 5.2.6. As with the WindowOrigin data, if the window moves, these
registers must be updated.

5.3.3 Writemasks

Normally both the hardware (if present) and the software writemasks will
initially be set to make all bitplanes writeable:

FBSoftwareWriteMask(TVP4010_ALL_WRITEMASKS_SET)

FBHardwareWriteMask(TVP4010_ALL_WRITEMASKS_SET)

5.3.4 Enabling Writing

Which buffers are enabled at any given time is window specific and should be
considered for performance reasons. Performance will be improved if

Window Initialization

5-9Initialization

unnecessary reads from, and writes to, buffers are disabled. For example, if
the current rendering does not use depth or stencil testing, then reading and
writing to the localbuffer may be disabled. The following example initializes the
buffers to allow depth buffering and alpha blending:

fbWriteMode.UnitEnable = TVP4010_ENABLE

FBWriteMode(fbWriteMode)

lbWriteMode.UnitEnable = TVP4010_ENABLE

LBWriteMode(lbWriteMode)

lbReadMode.ReadSourceEnable = TVP4010_DISABLE

lbReadMode.ReadDestinationEnable = TVP4010_ENABLE

LBReadMode(lbReadMode)

fbReadMode.ReadSourceEnable = TVP4010_DISABLE

fbReadMode.ReadDestinationEnable = TVP4010_ENABLE

FBReadMode(fbReadMode)

Note that to use software writemasking, the FBReadMode register ReadDes-
tinationEnable field needs to be set if the writemask is set to other than all ones.

5.3.5 Setting Pixel Size

The size of the pixels must be set so that the memory can be accessed
correctly. To do this, use the FBReadPixel register as follows:

fbReadPixel.PixelSize = TVP4010_16_BIT_PIXEL

FBReadPixel(fbReadPixel)

Three framebuffer pixel sizes are possible: 8, 16 and 32 bits. The localbuffer
pixel size is fixed at 16 bits.

Application Initialization

 5-10

5.4 Application Initialization

While an application is running, it may dynamically use features of the
TVP4010 such as depth buffering, alpha blending, logical operations, etc.
Initially, however, it is recommended that the respective units be disabled, to
ensure that they are in a known state:

areaStippleMode.UnitEnable = TVP4010_DISABLE

AreaStippleMode(areaStippleMode)

depthMode.UnitEnable = TVP4010_DISABLE

DepthMode(depthMode)

stencilMode.UnitEnable = TVP4010_DISABLE

StencilMode(stencilMode)

textureAddressMode.UnitEnable = TVP4010_DISABLE

TextureAddressMode(textureAddressMode)

textureReadMode.UnitEnable = TVP4010_DISABLE

TextureReadMode(textureReadMode)

texelLUTMode.UnitEnable = TVP4010_DISABLE

TexelLUTMode(texelLUTMode)

yuvMode.UnitEnable = TVP4010_DISABLE

YUVMode(yuvMode)

colorDDAMode.UnitEnable = TVP4010_DISABLE

ColorDDAMode(colorDDAMode)

textureColorMode.UnitEnable = TVP4010_DISABLE

TextureColorMode(textureColorMode)

fogMode.UnitEnable = TVP4010_DISABLE

FogMode(fogMode)

alphaBlendMode.UnitEnable = TVP4010_DISABLE

AlphaBlendMode(alphaBlendMode)

logicalOpMode.UnitEnable = TVP4010_DISABLE

LogicalOpMode(logicalOpMode)

statisticMode.EnableStats = TVP4010_DISABLE

StatisticMode(statisticMode)

Bypass Initialization

5-11Initialization

5.5 Bypass Initialization

The TVP4010 bypass mechanism gives direct access to memory that the
TVP4010 uses to hold the framebuffer, localbuffer and textures. In some
situations it is useful for an application to have direct access to this memory
without going through the graphics processor. Initialization of PCI registers, in
particular the Bypass Writemask register, covers initialization of the bypass
mechanism.

The memory configuration registers are generally set by resistors on the
TVP4010 graphics card (this may vary between vendors but it is the
recommended approach). The bypass writemask is undefined at boot time
and should be set to –1. This register is at offset 0x1140 in region 0 control
space.

Refer to the TVP4010 Data Manual for further details.

Bypass Initialization

 5-12

6-1

 Programming Tips

This chapter covers a variety of programming tips that make best use of the
TVP4010. The topics covered here are not exhaustive.

Topic Page

6.1 PCI Bus Issues 6-2.

6.2 Graphics Hyperpipeline 6-4.

6.3 Area Filling Techniques 6-6.

6.4 Copies and Downloads 6-8.

6.5 Multi Buffering 6-10.

6.6 Overlays 6-11.

6.7 Memory Organization 6-12.

6.8 Chroma Test 6-13.

Chapter 6

PCI Bus Issues

 6-2

6.1 PCI Bus Issues

6.1.1 Improving PCI bus bandwidth for Programmed I/O and DMA

The simplest way to program the TVP4010 is by writing data values into the
memory mapped registers, i.e. programmed I/O. This is appropriate for
primitives which require few set-up parameters such as 2D lines.

For more complex primitives such as Gouraud shaded triangles, where a
significant number of registers must be loaded for each primitive, it may be
more optimal to write directly to the TVP4010 FIFO input.

The advantage of this mechanism is that it is then possible to use DMA burst
transfers. The disadvantage of this method is that both the address of the
register and the data value to be loaded must be written, apparently doubling
the amount of data to be loaded.

However, to improve bus bandwidth utilization, the registers have been
grouped, into blocks which frequently need to be updated together. An indexed
addressing mode is supported that allows a single address to be loaded,
followed by the data for a whole set of registers.

An additional mode is supported that allows a large number of data values to
be loaded to the same register. This is useful for image downloads.

For more detail, refer to section 2.3.

6.1.2 PCI burst transfers under Programmed I/O

PCI bus burst transfers typically allow up to four times the bandwidth of
individual transfers. However burst transfers are only initiated on the PCI bus
when successive addresses are being written to (i.e. the byte address is
incremented by 4). When using burst transfers to perform programmed I/O to
load the TVP4010 FIFOs, the TVP4010 multiply maps the FIFO input register
throughout the range:

 0x00002000 to 0x00002FFF in region 0

Thus when data is being loaded into the FIFO a software loop should be written
which starts by writing the first data item at the lower extreme of this address
range, and works towards the upper. For further information see section 3.2

6.1.3 Using PCI Disconnect under Programmed I/O

The PCI bus protocol incorporates a feature known as PCI Disconnect, which
is supported by the TVP4010. Once the TVP4010 is in this mode, if the host

PCI Bus Issues

6-3 Programming Tips

processor attempts to write to the full FIFO, the TVP4010 chip will assert PCI
Disconnect instead of the write being lost. This in turn causes the host
processor to keep retrying the write cycle until it succeeds.

This PCI disconnect feature allows faster download of data to the TVP4010
since the host need not poll the InFIFOSpace register. It should be used with
care because when the PCI Disconnect is asserted, the bus is effectively
hogged by the host processor until such time as the TVP4010 frees up an
entry in its FIFO.

6.1.4 Using bus mastership (DMA)

It is expected that most the TVP4010 boards will support PCI bus mastership.
This allows the on-board DMA to copy data from host memory into the
TVP4010 FIFO.

The use of PCI bus mastership has a number of benefits:

� PCI bus bandwidth utilization is generally much improved.

� PCI bus bandwidth is further improved because the driver software no
longer needs to poll the FIFO flags to find how many entries are empty,
before loading it.

� Overall system performance may benefit through increased parallelism
between the TVP4010 and the host, as the host can often perform useful
work preparing the next DMA buffer once it has initiated a DMA transfer.

See subsection 2.3.3 for more details on using DMA.

6.1.5 Improving performance with DMA

Using DMA interrupts can significantly improve performance as these allow
useful work to be done in time that would otherwise be used by polling.

Having multiple DMA buffers is usually advantageous. The size and number
of buffers is dependent on operating system (OS) dependant issues such as
context switch time.

Graphics Hyperpipeline

 6-4

6.2 Graphics Hyperpipeline

6.2.1 Disable Unused Units

Any unit that is not being used should be disabled. This will maximize pixel
throughput in the graphics core.

It is important to make sure that data is not being read from the texture buffer,
localbuffer or framebuffer unless it is needed. For instance, it is possible to set
up the localbuffer read unit such that the TVP4010 reads per pixel information,
such as Z or stencil buffer data, that is then discarded. The effect will be the
same visually, but the cost in performance of making the memory accesses is
very high. It is also important to set the LBDisableUpdate bit in the Window
register if localbuffer writes are not needed.

For optimal performance, hardware writemasks should be used in preference
to software masks.

6.2.2 Avoid Unnecessary Register Updates

The TVP4010 control registers maintain their state between primitives so they
do not need to be updated unless the data needs to change. For example, the
dY register might be set to +1 for a trapezoid and does not need to be reloaded
until a line primitive is drawn.

All delta values and start values are maintained across primitives, so if two
triangles share a dominant edge, the start and dominant edge values do not
need to be calculated or loaded twice.

Similarly, window clipping need not reload all the registers for each clip
rectangle. For example: Load the registers ready for a primitive to be drawn,
then enter a loop which repeatedly loads the coordinates for a clip rectangle
into the Scissor unit and then sends the Render command. Any number of clip
rectangles can be processed in this way but the TVP4010 requires only one
setup for each primitive.

6.2.3 Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive should
be loaded into the TVP4010 FIFO in unit order. Thus, the registers associated
with the Rasterizer unit should be loaded first, then Scissor, Stipple,
Localbuffer Read, and so on until the last unit to be loaded is the Host Out unit
(if necessary). Then finally the relevant command register should be loaded.

For the order of the units in the hyperpipeline, see to Figure 4–1 of Chapter 4.

Graphics Hyperpipeline

6-5 Programming Tips

6.2.4 Use of Continue Commands

The continue commands provide an efficient method for drawing complex
primitives without decomposing them into trapezoids or single lines.

As far as context switching is concerned, each primitive should be treated as
atomic. For example, if the TVP4010 context switched after the Render
command for a triangle, but before it’s associated ContinueNewDom
command, the second part of the primitive may be drawn incorrectly. This is
because the TVP4010 relies on the internal state set up by the Render
command that would have been corrupted by any intervening context.

A second requirement of the continue commands is that data written to the
framebuffer or localbuffer before the continue, should not be read afterwards.
This is not a common occurrence, but a possible situation is where two lines
are drawn, the second joining the end of the first and being started by
ContinueNewLine. If these lines are XORed, they will read the pixel they are
about to write to. If the second line is at a sharp angle so that it folds back and
overwrites some or all of the first line, the XOR operation is not correct because
the pixels from the first line may not have been written to memory before the
second line reads them.

If this situation is likely to occur, a Sync command should be sent before the
ContinueNewLine. This will ensure that all necessary writes complete before
the corresponding reads. The software does not have to wait for the Sync to
be read from the output FIFO; simply sending Sync is enough to ensure correct
operation.

Area Filling Techniques

 6-6

6.3 Area Filling Techniques

This section describes the various techniques used to fill an area.

6.3.1 Clearing Buffers Quickly

Block writes are a feature of SGRAMs. Data written once to a single address
can be applied to several addresses at the same time. This is a very fast way
of filling areas of the screen, but there are restrictions on when they can be
used which are covered elsewhere in this manual.

Block writes are most obviously useful for clearing the screen, but because the
TVP4010 has a unified memory buffer it is possible to clear the localbuffer with
block writes also.

The extent checking in the host out unit can be used to indicate the area of the
screen that has been written, so the screen clear can be limited to the minimum
area necessary.

6.3.2 Avoid Clearing Buffers

Although block writes can be used for fast clearing of buffers, it is best not to
clear them at all. If all pixels on the screen are drawn at least once per frame
then the framebuffer does not need to be cleared. There is no need to clear
the localbuffer either if the following procedure is followed.

For even frames, put the viewer at a depth position of zero and draw objects
in the lower half of the depth range with the depth test set to less than. For odd
frames, put the viewer at the maximum depth value and draw objects into the
upper half of the depth range with the depth test set to greater than.

This loses half of the depth range, but avoids the need to clear the depth buffer
if every pixel is touched at least once.

6.3.3 Trapezoid Fills

Block writes are most useful when clearing the framebuffer, but can be used
to fill any trapezoid.

Block fills, however, are limited to the area defined by the Rasterizer and
cannot be changed by the stipple test. A quick filling technique that permits
these tests can be achieved by setting the UseConstantFBWriteData bit in the
Logic Op unit. When this bit is set, the required color should be loaded into the
FBWriteData register in the format needed by the memory. All unrequired units
should be disabled and the Rasterizer started. The fill can be done up to twice

Area Filling Techniques

6-7 Programming Tips

as quickly using this method as opposed to the ConstantColor register
method.

Also remember that even though the display may be 8 bits per pixel, the chip
can be told to draw at 32 bits per pixel. When this is done four pixels are plotted
at one time, but the width of the region the Rasterizer covers should be
reduced by a factor of four. Use the technique described in the tip about packed
copies to get the Framebuffer Write Unit to calculate addresses correctly for
32 bit pixels. The PackedDataLimits register can also be used to mask out
unwanted pixels on the left and right edge.

Copies and Downloads

 6-8

6.4 Copies and Downloads

6.4.1 Copies

If the pixel size is 8 or 16 bits per pixel, the copy speed can be improved by
moving more than one pixel at a time. This is achieved by setting the
PackedCopy bit in the Framebuffer Read unit. This bit tells the TVP4010 that
it should pretend that the pixel size is 32 bits and calculate the addresses
accordingly. The screen width does not need to be changed, nor does the base
address or source offset value. The Rasterizer should be programmed to
rasterize a rectangle that is a factor of four narrower (for 8-bit pixels) or a factor
of two narrower (for 16 bit pixels) than the normal size.

The groups of four or two pixels that are copied are all aligned to a 32-bit
boundary, but if some of the edge pixels are not needed, the PackedDataLimits
register can be used to mask them out. If the source and destination pixels
have a different alignment, the RelativeOffset field in the FBReadMode
register can be used to specify how the source needs to be shifted to line up
with the destination.

6.4.2 Downloads

The same registers described in the previous tip can also be used to pack data
during a download to the framebuffer or localbuffer. If the Rasterizer is set to
sync on FBData, the data sent to the TVP4010 must be in the raw memory
format. Four 8-bit pixels can be written at one time to the chip, and the
PackedDataLimits register set to mask any unwanted pixels at the left and right
edges; the RelativeOffset field is used to shift the alignment of the data as it
is being stored.

Downloads to the localbuffer can use LBData, but the Rasterizer does not
support sync on LBData, so the data must be explicitly synchronized using the
Sync command. Alternatively, downloads of stencil and/or depth data can be
performed through the framebuffer write unit, allowing WaitForCompletion or
sync on FBData to be used.

6.4.3 Loading Textures

The TVP4010 handles internal synchronization so that all necessary writes
complete before reads for a given buffer. If the same data is treated as two
different types, the chip must be explicitly synchronized. When a texture is
downloaded, it is written to memory through the framebuffer write unit, but it
is read through the Texture Read unit. This means that the chip must be
synchronized between loading the texture and reading it; otherwise, there is

Copies and Downloads

6-9 Programming Tips

no insurance that the writes will have completed before the reads begin. A
Sync command can be used to do this, or a WaitForCompletion command
which does not require the polling of the output FIFO.

Similarly, if the Framebuffer Write unit is used to clear the localbuffer, or the
Texture Read unit is used in a copy operation, the chip must be synchronized.
The chip will synchronize between localbuffer read and localbuffer write, and
between framebuffer read and framebuffer write. Any operations that mix
buffers need synchronization.

If a texture is downloaded as a normal image, it can make use of the formatting
in the chip to change color format and reorganize the data into rectangular
patches. If texture is already in the required format, a fast texture download can
be used. To use this, set the TextureDownloadOffset register to point to the
start address of the texture (in 32-bit words). Write 32-bit texture data to the
TextureData register and this will be written to memory without changing
format. The TextureDownloadOffset will automatically increment following
each write. If the texture is 8 bits per texel, then four texels must be supplied
at a time. This method of texture download avoids the need to set-up the
Rasterizer for image download and allows the state of the chip to be left
unchanged. Even the framebuffer writes do not have to be enabled.

Multi Buffering

 6-10

6.5 Multi Buffering

6.5.1 Fast Double Buffering

The TVP4010 board designs can readily support a variety of double buffering
mechanisms depending on the memory configuration and LUT-DAC used,
including:
� BLT
� Full Screen
� Bitplane

For further details see sections 3.4, 4.12.8, 4.12.9 and 4.13 of this user’s
guide.

Note that optimal functionality may be achieved by mixing two or more of the
above double buffering techniques.

As a general performance note, it is best to send non-framebuffer related
commands to the TVP4010 following a SuspendUntilFrameBlank command.
For example, any commands to clear the depth buffer between frames should
be sent as these will not affect the framebuffer and will be executed while the
TVP4010 waits for the VBLANK. This allows better overlap between the host
and the TVP4010. In general any commands that will not cause rendering to
the framebuffer to occur can be queued in the TVP4010 FIFO before waiting
on VBLANK.

6.5.2 Triple Buffering

Most 3D systems support double buffering where one frame is displayed while
the next frame is being drawn. To avoid display artefacts, the change between
old and new buffers must happen during a vertical frame blank, but this
imposes a granularity on the frame rate. If a scene takes slightly longer than
one frame period to draw, it has to wait for another frame before it can display,
so the frame rate halves.

If three buffers are used, the quantization is removed and the system can
continue to draw at maximum rate.

Overlays

6-11 Programming Tips

6.6 Overlays

Overlay planes are useful for window systems and for games that move sprites
across a static background. The TVP4010 does not have direct support, but
if it is used with a RAMDAC such as the IBM526DB then overlays are possible.

Overlays are only available with the 5:5:5:1 color format in a 32-bit pixel. The
TVP4010 5551 color formats copy the data into both 16-bit halves of the 32-bit
pixel. The writemask is used to write either the upper or lower half to memory.

The RAMDAC can be programmed to display a 16-bit pixel from either the
upper or lower half of the 32-bit word; which one is displayed is set by bit 31.
Bit 31 corresponds to the alpha bit of the 16-bit pixel, and this can be forced
to either 1 or 0 by the Color Format unit.

When drawing to the underlay (or main image), set the Color Format unit to
force the alpha to zero, set the writemask to allow writes to the lower half of
the word. When drawing to the overlay, set the Color Format unit to force the
alpha value to 1 and writemask to allow writes to the upper half of the word.

If the RAMDAC is set into the appropriate mode, pixels in the overlay half of
the word will be drawn where alpha is one in the overlay and from the main
image where it is zero in the overlay.

Memory Organization

 6-12

6.7 Memory Organization

The amount of memory available to the TVP4010 depends on the board it is
fitted to. The most efficient way to allocate memory will depend on the needs
of the system, but in general the display should be allocated at one end of the
SGRAM and the localbuffer at the other end. This leaves a region between the
two buffers in which textures can be stored. For optimal performance, each
buffer (front color, back color, texture and depth) should reside in separate
memory banks. Memory is organized as shown in Table 6–1.

Table 6–1. Memory Organization

Memory size Banks Size per bank

2Mb 2 1Mb

4Mb 4 1Mb

6Mb 4 1 or 2Mb

8Mb 4 2Mb

With 6Mb of memory, the first two banks will contain 1Mb and the subsequent
two, 2Mb.

Chroma Test

6-13 Programming Tips

6.8 Chroma Test

Chroma key testing can be done without involving texture mapping. This is
achieved by setting the TexelDisableUpdate field in the YUVMode register.
This allows fragments to be rejected by chroma testing as part of a copy
operation. The texels are read in and tested, and fragments rejected if the
colors do not match. Setting the TexelDisableUpdate bit discards the data as
soon as the test has been done which improves performance.

This is described in more detail in subsection 4.9.1

Chroma Test

 6-14

7-1

 Graphics Register Reference

This chapter gives details of the format of each of the Graphics registers for
the TVP4010. The registers are listed alphabetically by name within their
function, with the functions themselves listed alphabetically.

� Tag specifies the offset for this register from the base address of the
region.

� Read/write indicates that the register can be both read and written.

� Write indicates that the register can only be written. The value of any read
from this address is undefined.

� Reset Value specifies the value of the register following hardware reset.
In general this is undefined for Graphics registers.

In the diagrams:

� Reserved indicates bits that may be used in future members of the
TVP4010 family. To ensure upwards compatibility, any software should
not assume a value for these bits when read, and should always write
them as zeros.

� Not used indicates bits that are adjacent to numeric fields. These may be
used in future members of the TVP4010 family, but only to extend the
dynamic range of these fields. The data returned from a read of these bits
is undefined. When a Not Used field resides in the most significant
position, a good convention to follow is to sign extend the numeric value,
rather than masking the field to zero before writing the register. This will
ensure compatibility if the dynamic range is increased in future members
of the TVP4010 family.

� For enumeration fields which do not specify the full range of possible
values, only the specified values should be used. An example of an
enumeration field is the comparison field in the DepthMode register.
Future members of the TVP4010 family may define a meaning for the
unused values.

Chapter 7

 AlphaBlendMode mnemonic

7-3 Graphics Register Reference

AlphaBlendMode
Aldslkjkldjflkdjfkljlksjfklsjkfskjppppoooii

Name: AlphaBlend Mode

Unit: Texture/Fog/Blend

Tag: 0x0102

Reset Value: Undefined

Read/write

08162431

Reserved

Enable

NoAlphaBuffer

ColorFormat Operation

ColorOrder

BlendType
Reserved

ColorFormatExtension

Controls Alpha Blending.

Bit0 Enable:
0 = Disable
1 = Enable alpha blending or

color formatting

Bit1–7 Operation:

Mode Operation R G B A

16 Format Rd Gd Bd Ad

84 Blend Rs * As + Rd * (1–As) Gs * As + Gd * (1–As) Bs * As + Bd * (1–As) As * As + Ad * (1–As)

81 PreMult Rs + Rd * (1–As) Gs + Gd * (1–As) Bs + Bd * (1–As) As + Ad * (1–As)

Result of different operations. Cs = source color component, Cd = destination
color component.

(See overleaf for description of the remaining bits).

mnemonic AlphaBlendMode

7-4

Bit8–11 Color Format:

Internal Color Channel

Format 1 Color Order Name R G B A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24

1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15

2 BGR 4:4:4:4 4@0 4@4 4@8 4@12

5 BGR 3:3:2 Front 3@0 3@3 2@6 0

6 BGR 3:3:2 Back 3@8 3@11 2@14 0

9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7

10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15

11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0

12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0

13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31

14 BGR CI8 8@0 0 0 0

16 BGR 5:6:5 Front 5@0 6@5 5@11 0

17 BGR 5:6:5 Back 5@16 6@21 5@27 0

0 RGB 8:8:8:8 8@16 8@8 8@0 8@24

1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15

2 RGB 4:4:4:4 4@8 4@4 4@0 4@12

5 RGB 3:3:2 Front 3@5 3@2 2@0 0

6 RGB 3:3:2 Back 3@13 3@10 2@8 0

9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7

10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15

11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0

12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0

13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31

14 RGB CI8 8@0 0 0 0

16 RGB 5:6:5 Front 5@11 6@5 5@0 0

17 RGB 5:6:5 Back 5@27 6@21 5@16 0

1) The format column is also dependant on bit16. n@m means n bits starting at bit m. Front and Back modes
replicate the color value to assist with double buffering. CI values are replicated into each byte to assist with
double buffering. Offset modes have 64 added to the 7 bit formatted value. If the format has no alpha bits, the
alpha field defaults to 0xF8

Bit12 NoAlphaBuffer

0 = Alpha buffer present
1 = No alpha buffer present

 AlphaBlendMode mnemonic

7-5 Graphics Register Reference

Bit13 ColorOrder:
0 = BGR
1 = RGB

Bit14 BlendType:
0 = RGB
1 = Ramp

Bit16 Color Format Extension. Most significant bit
extension to Color Format held in bits 8–11.

mnemonic AreaStippleMode

7-6

AreaStippleMode

Name: Area Stipple Mode

Unit: Scissor/Stipple

Tag: 0x0034

Reset Value: Undefined

Read/write

08162431

Reserved

Enable UnitNot used

Invert Stipple Pattern

Reserved

MirrorX

MirrorY

ForceBackgroundColor

XOffsetYOffset

Not used

Controls Area Stippling. Both the AreaStippleEnable bit in the Render command and the
enable in the AreaStippleMode register must be set to enable the area stipple test.

Bit0 Unit Enable
0 = Disable
1 = Enable

Bit7–9 XOffset

Bit12–14 YOffset

Bit17 Invert Stipple Pattern
0 = No Invert
1 = Invert

Bit18 Mirror X
0 = No Mirror in X
1 = Mirror stipple pattern
in X direction

 AreaStippleMode mnemonic

7-7 Graphics Register Reference

Bit19 Mirror Y
0 = No Mirror in Y
1 = Mirror stipple pattern
 in Y direction

Bit20 ForceBackgroundColor. Controls operation of the
stipple test. If disabled any fragment failing the test
is discarded. If enabled any fragment failing the
test is drawn (other tests allowing) but the color is
taken from the Texel0 register. Used to support
foreground and background colors.

0 = Disable
1 = Enable

mnemonic AreaStipplePattern(0...7)

7-8

AreaStipplePattern(0...7)

Name: Area Stipple Pattern

Unit: Scissor/Stipple

Tag: 0x0040, ...,0x0047

Reset Value: Undefined

Read/write

08162431

Reserved 8 bit mask

These eight registers provide the bitmask which enables and disables
corresponding fragments for drawing when rasterizing a primitive with area
stippling.

Both the AreaStippleEnable in the Render command and enable in the
AreaStippleMode register must be set, to enable the area stipple test.

 AStart mnemonic

7-9 Graphics Register Reference

AStart

Name: Initial Alpha Color

Unit: Color DDA

Tag: 0x00F9

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Alpha for a vertex when in
Gouraud shading mode. The value is 2s-complement 6.11 fixed-point format.

mnemonic BitMaskPattern

7-10

BitMaskPattern

Name: Bit Mask Pattern

Unit: Rasterizer

Tag: 0x000D

Reset Value: Undefined

Write only

08162431

32 bit mask

Value used to control the bit mask stipple operation (if enabled). Fragments are
accepted or rejected based on the current BitMask test modes defined by the
RasterizerMode register. Note that the SyncOnBitmask bit in the Render
command must also be enabled.

 BStart mnemonic

7-11 Graphics Register Reference

BStart

Name: Initial Blue Color

Unit: Color DDA

Tag: 0x00F6

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Blue for a vertex when in
Gouraud shading mode. The value is 2s-complement 6.11 fixed-point format.

mnemonic ChromaLowerBound,ChromaUpperBound

7-12

ChromaLowerBound,ChromaUpperBound

Name: Chroma Lower Bound, Chroma Upper Bound

Unit: YUV

Tag: 0x01E2, 0x01E1

Reset Value: Undefined

Read/write

08162431

BlueAlpha Green Red

08162431

VAlpha U Y

Specifies the lower and upper bounds for the chroma test. The test is done
against the contents of the Texel0 register which holds data in the internal RGB
format of 5 bits integer and 3 bits fraction, or the YUV format (before
conversion) of 8 bits per component. The test is done on all 8 bits of each
component. All components must be inside the bounds for the test to pass, if
TestMode is set to 1 in the YUVMode register, or fail if TestMode is set to 2 in
the YUVMode register.

 Color mnemonic

7-13 Graphics Register Reference

Color

Name: Color

Unit: Color DDA

Tag: 0x00FE

Reset Value: Undefined

Write

08162431

BlueAlpha Green Red

Used for downloading image data to the framebuffer. The format is either the
standard color format, or the raw framebuffer format if the Color Format unit
is disabled.

The internal color format will interpret the 8 bit fields as either 5.3 fixed-point
for 3D operations or 8 bit integer for 2D operations. In CI mode the color index
is placed in bits 0–7. If there are less than 8 bits in a component it should be
left justified and the unused bits set to zero.

This register cannot be saved and restored as part of a task context switch.

When used this register should always be reloaded at start of every command,
and the Color DDA unit must be disabled prior to loading it.

mnemonic ColorDDAMode

7-14

ColorDDAMode

Name: Color DDA Mode

Unit: Color DDA

Tag: 0x00FC

Reset Value: Undefined

Read/write

08162431

Reserved

Shading Mode Unit Enable

The bit fields control the mode of operation of the Color DDA unit:

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Shading mode control:
0 = Flat
1 = Gouraud

 ConstantColor mnemonic

7-15 Graphics Register Reference

ConstantColor

Name: Constant Color

Unit: Color DDA

Tag: 0x00FD

Reset Value: Undefined

Read/write

08162431

BlueAlpha Green Red

08162431

32 bit value

Holds the constant color in either RGBA or raw framebuffer format. This value
is used when the ColorDDAMode register is set to flat shading mode.

The internal color format will interpret the 8 bit fields as either 5.3 fixed-point
for 3D operations or 8 bit integer for 2D operations. In CI mode the color index
is placed in bits 0–7. If a component has less than 8 bits, it should be left
justified and the unused bits set to zero.

mnemonic Continue

7-16

Continue

Name: Continue

Unit: Rasterizer

Tag: 0x000B

Reset Value: Undefined

Write

08162431

Reserved 11 bit unsigned integer

This command causes rasterization to continue after new delta value(s) have
been loaded, but does not cause either of the trapezoid’s edge DDAs to be
reloaded.

The data field holds the number of scanlines to fill. Note this count does not
get loaded into the Count register.

 ContinueNewDorm mnemonic

7-17 Graphics Register Reference

ContinueNewDom

Name: Continue – New Dominant Edge

Unit: Rasterizer

Tag: 0x0009

Reset Value: Undefined

Write

08162431

Reserved 11 bit unsigned integer

This command causes rasterization to continue with a new dominant edge.
The dominant edge DDA is reloaded with the new parameters. The
subordinate edge is carried on from the previous trapezoid. This allows any
convex polygon to be broken down into a collection of trapezoids and
continuity maintained across boundaries.

Since this command only affects the Rasterizer DDA (and not of any other
units), it is not suitable for 3D operations.

The data field holds the number of scanlines to fill. Note that this count does
not get loaded into the Count register.

mnemonic ContinueNewLine

7-18

ContinueNewLine

Name: Continue – New Line Segment

Unit: Rasterizer

Tag: 0x0008

Reset Value: Undefined

Write

08162431

Reserved 11 bit unsigned integer

This command causes rasterization to continue for the next segment in a
polyline. The XY position is carried on from the previous line, however the
fraction bits in the DDAs can be kept, set to zero, one half, or nearly one half,
under control of the RasterizerMode register.

The data field holds the number of pixels in a line. Note this count does not get
loaded into the Count register.

The use of ContinueNewLine is not recommended for OpenGL because the
DDA units will start with a slight error as compared with the value they would
have been loaded with for the second and subsequent segments.

 ContinueNewSub mnemonic

7-19 Graphics Register Reference

ContinueNewSub

Name: Continue – New SubordinateEdge

Unit: Rasterizer

Tag: 0x000A

Reset Value: Undefined

Write

08162431

Reserved 11 bit unsigned integer

This command causes rasterization to continue with a new subordinate edge.
The subordinate DDA is reloaded with the new parameters. The dominant
edge is carried on from the previous trapezoid. This is very useful when scan
converting triangles with a knee (i.e. two subordinate edges).

The data field holds the number of scanlines to fill. Note this count does not
get loaded into the Count register.

mnemonic Count

7-20

Count

Name: Count

Unit: Rasterizer

Tag: 0x0006

Reset Value: Undefined

Read/write

08162431

Reserved 11 bit unsigned integer

Interpretation of contents is dependent on the mode set in the Render
command i.e. it specifies the number of pixels in a line, or the number of
scanlines in a trapezoid.

 dBdx mnemonic

7-21 Graphics Register Reference

dBdx

Name: X Derivative – Blue

Unit: Color DDA

Tag: 0x00F7

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the X derivative for the Blue value for the interior
of a trapezoid when Gouraud shading. The value is in 2s-complement 6.11
fixed-point format.

mnemonic dBdyDom

7-22

dBdyDom

Name: Y Derivative Dominant – Blue

Unit: Color DDA

Tag: 0x00F8

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the Y derivative dominant, for the Blue value along
a line, or for the dominant edge of a trapezoid, when in Gouraud shading mode.
The value is in 2s-complement 6.11 fixed-point format.

 Depth mnemonic

7-23 Graphics Register Reference

Depth

Name: Depth

Unit: Stencil/Depth

Tag: 0x0135

Reset Value: Undefined

Read/write

08162431

Depth valueNot used

08162431

Depth valueNot used

Holds an externally sourced 16 or 15 bit depth value. The unused most
significant bits should be set to zero.

This is used in the draw pixels function where the host supplies the depth
values through the Depth register.

Alternatively this is used when a constant depth value is needed, for example,
when clearing the depth buffer, or for 2D rendering where the depth is held
constant.

mnemonic DepthMode

7-24

DepthMode

Name: Depth Mode

Unit: Stencil/Depth

Tag: 0x0134

Reset Value: Undefined

Read/write

08162431

Unit enable

Write Mask

New Depth SourceCompare Mode

Reserved

Controls the comparison of a fragment depth value and updating of the depth
buffer. If the compare function is LESS and the result is true then the fragment
value is less than the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Writemask:
0 = Disable write to depth buffer
1 = Enable write to depth buffer

Bit2–3 Source of depth value for comparison:
0 = Fragment’s depth value
1 = LBData –
for copy pixels when destination
depth planes are not updated.
2 = Depth register
3 = LBSourceData –
for copy pixels when destination
depth planes are updated.

 Running Title—Attribute Reference mnemonic

7-25 Chapter Title—Attribute Reference

Bit4–6 Comparison function:
0 = NEVER
1 = LESS
2 = EQUAL
3 = LESS OR EQUAL
4 = GREATER
5 = NOT EQUAL
6 = GREATER OR EQUAL
7 = ALWAYS

mnemonic dFdx

7-26

dFdx

Name: X Derivative – Fog

Unit: Texture/Fog/Blend

Tag: 0x00D5

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Fog coefficient derivative per unit X for use in rendering trapezoids. The value
is in 2s-complement 2.16 fixed-point format.

 dFdyDom mnemonic

7-27 Graphics Register Reference

dFdyDom

Name: Y Derivative Dominant – Fog

Unit: Texture/Fog/Blend

Tag: 0x00D6

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Fog coefficient derivative per unit Y along a line, or for the dominant edge of
a trapezoid. The value is in 2s-complement 2.16 fixed-point format.

mnemonic dGdx

7-28

dGdx

Name: X Derivative – Green

Unit: Color DDA

Tag: 0x00F4

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the X derivative for the Green value for the interior
of a trapezoid when Gouraud shading. The value is in 2s-complement 6.11
fixed-point format.

 dGdyDom mnemonic

7-29 Graphics Register Reference

dGdyDom

Name: Y Derivative Dominant – Green

Unit: Color DDA

Tag: 0x00F5

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the Y derivative dominant, for the Green value along
a line, or for the dominant edge of a trapezoid, when in Gouraud shading mode.
The value is in 2s-complement 6.11 fixed-point format.

mnemonic DitherMode

7-30

DitherMode

Name: Dither Mode

Unit: Color Format

Tag: 0x0103

Reset Value: Undefined

Read/write

08162431

Color format

Reserved

Dither enable

Unit enable

X offset

Y offset

ForceAlphaColor format extension

DitherMethod

Reserved

Color order

Controls the Color Format unit.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Dither Enable:
0 = Disable
1 = Enable

See the register description above for the remaining bits.

 DitherMode mnemonic

7-31 Graphics Register Reference

Bit2–5 Color Format:

Internal Color Channel

Format 2 Color Order Name R G B A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24

1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15

2 BGR 4:4:4:4 4@0 4@4 4@8 4@12

5 BGR 3:3:2 Front 3@0 3@3 2@6 0

6 BGR 3:3:2 Back 3@8 3@11 2@14 0

9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7

10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15

11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0

12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0

13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31

14 BGR CI8 8@0 0 0 0

16 BGR 5:6:5 Front 5@0 6@5 5@11 0

17 BGR 5:6:5 Back 5@16 6@21 5@27 0

0 RGB 8:8:8:8 8@16 8@8 8@0 8@24

1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15

2 RGB 4:4:4:4 4@8 4@4 4@0 4@12

5 RGB 3:3:2 Front 3@5 3@2 2@0 0

6 RGB 3:3:2 Back 3@13 3@10 2@8 0

9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7

10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15

11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0

12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0

13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31

14 RGB CI8 8@0 0 0 0

16 RGB 5:6:5 Front 5@11 6@5 5@0 0

17 RGB 5:6:5 Back 5@27 6@21 5@16 0

2) The format column is also dependant on bit16. n@m means n bits starting at bit m. Front and Back modes
replicate the color value to assist with double buffering. CI values are replicated into each byte to assist with
double buffering. Offset modes have 64 added to the 7 bit formatted value. If the format has no alpha bits, the
alpha field defaults to 0xF8

Bit6–7 XOffset to enable window relative dithering.

Bit8–9 YOffset to enable window relative dithering.

mnemonic DitherMode

7-32

Bit10 Color Order:
0 = BGR
1 = RGB

Bit11 Dither Method:
0 = Ordered
1 = Line

Bit12–13 ForceAlpha:
0 = Disable
1 = Force to 0
2 = Force to 0xF8

Bit16 Color Format Extension. Most significant bit
 extension to Color Format held in bits0–3

 dKddx mnemonic

7-33 Graphics Register Reference

dKddx

Name: X Derivative – Kd

Unit: Texture/Fog/Blend

Tag: 0x00DD

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Diffuse light coefficient derivative per unit X for use in rendering texture
mapped trapezoids using ramp application mode. The value is in
2s-complement 2.16 fixed-point format.

mnemonic dKddyDom

7-34

dKddyDom

Name: Y Derivative Dominant – Kd

Unit: Texture/Fog/Blend

Tag: 0x00DE

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Diffuse light coefficient derivative per unit Y along a line, or for the dominant
edge of a trapezoid, for use with ramp texture application mode. The value is
in 2s-complement 2.16 fixed-point format.

 dKsdx mnemonic

7-35 Graphics Register Reference

dKsdx

Name: X Derivative – Ks

Unit: Texture/Fog/Blend

Tag: 0x00DA

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Specular light coefficient derivative per unit X for use in rendering texture
mapped trapezoids using ramp application mode. The value is in 2s-comple-
ment 2.16 fixed-point format.

mnemonic dKsdyDom

7-36

dKsdyDom

Name: Y Derivative Dominant – Ks

Unit: Texture/Fog/Blend

Tag: 0x00DB

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Specular light coefficient derivative per unit Y along a line, or for the dominant
edge of a trapezoid, for use with ramp texture application mode. The value is
in 2s-complement 2.16 fixed-point format.

 dQdx mnemonic

7-37 Graphics Register Reference

dQdx

Name: X Derivative – Homogeneous texture coordinate

Unit: Texture Address

Tag: 0x0078

Reset Value: Undefined

Read/write

08162431

ReservedFraction

Integer

Sign

Used to set the X derivative for the Q coordinate when texture mapping.
Format is 2s-complement 2.27 fixed-point.

mnemonic dQdyDom

7-38

dQdyDom

Name: Y Derivative Dominant – Homogeneous texture coordinate

Unit: Texture Address

Tag: 0x0079

Reset Value: Undefined

Read/write

08162431

ReservedFraction

Integer

Sign

Used to set the Y dominant derivative for the Q coordinate when texture
mapping. Format is 2s-complement 2.27 fixed-point.

 dRdx mnemonic

7-39 Graphics Register Reference

dRdx

Name: X Derivative – Red

Unit: Color DDA

Tag: 0x00F1

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the X derivative for the Red value for the interior of
a trapezoid when Gouraud shading. The value is in 2s-complement 6.11 fixed-
point format.

mnemonic dRdyDom

7-40

dRdyDom

Name: Y Derivative Dominant – Red

Unit: Color DDA

Tag: 0x00F2

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the Y derivative dominant, for the Red value along
a line, or for the dominant edge of a trapezoid, when in Gouraud shading mode.
The value is in 2s-complement 6.11 fixed-point format.

 dSdx mnemonic

7-41 Graphics Register Reference

dSdx

Name: X Derivative – Texture S coordinate

Unit: Texture Address

Tag: 0x0072

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the X derivative for the S coordinate when texture mapping. Format
is 2s-complement 12.18 fixed-point.

mnemonic dSdyDom

7-42

dSdyDom

Name: Y Derivative Dominant – Texture S coordinate

Unit: Texture Address

Tag: 0x0073

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the Y dominant derivative for the S coordinate when texture
mapping. Format is 2s-complement 12.18 fixed-point.

 dTdx mnemonic

7-43 Graphics Register Reference

dTdx

Name: X Derivative – Texture T coordinate

Unit: Texture Address

Tag: 0x0075

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the X derivative for the T coordinate when texture mapping. Format
is 2s-complement 12.18 fixed-point.

mnemonic dTdyDom

7-44

dTdyDom

Name: Y Derivative Dominant – Texture T coordinate

Unit: Texture Address

Tag: 0x0076

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the Y dominant derivative for the T coordinate when texture
mapping. Format is 2s-complement 12.18 fixed-point.

 dxDom mnemonic

7-45 Graphics Register Reference

dXDom

Name: Delta X Dominant

Unit: Rasterizer

Tag: 0x0001

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Value added when moving from one scanline to the next for the dominant edge
in trapezoid filling. The value is in 2s-complement 12.15 fixed-point format.

Also holds the change in X when plotting lines. For Y major lines this will be
some fraction (dx/dy), otherwise it is normally ± 1.0, depending on the required
scanning direction.

mnemonic dXSub

7-46

dXSub

Name: Delta X Subordinate

Unit: Rasterizer

Tag: 0x0003

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Value added when moving from one scanline to the next for the subordinate
edge in trapezoid filling. The value is in 2s-complement 12.15 fixed-point
format.

 dY mnemonic

7-47 Graphics Register Reference

dY

Name: Delta Y

Unit: Rasterizer

Tag: 0x0005

Reset Value: Undefined

Read/write

08162431

Not used

Not used

14 bit fraction10 bit integer

Sign

Value added to Y to move from one scanline to the next.

For X major lines this will be some fraction (dy/dx), otherwise it is normally
±1.0, depending on the required scanning direction. The value is in 2s-comple-
ment 11.14 fixed-point format.

For trapezoids the value will be ±1.0 depending on the scanning direction.

mnemonic dZdxL

7-48

dZdxL

Name: Depth Derivative X – Lower

Unit: Stencil/Depth

Tag: 0x0139

Reset Value: Undefined

Read/write

08162431

11 bit fraction Not used

This register holds part of the depth derivative per unit in X used in rendering
trapezoids. dZdxU holds the most significant bits, and dZdxL the least
significant bits. The combined value is in 2s-complement 17.11 fixed-point
format.

 dZdxU mnemonic

7-49 Graphics Register Reference

dZdxU

Name: Depth Derivative X – Upper

Unit: Stencil/Depth

Tag: 0x0138

Reset Value: Undefined

Read/write

08162431

Not Used 16 bit integer

Sign

This register holds part of the depth derivative per unit in X used in rendering
trapezoids. dZdxU holds the most significant bits, and dZdxL the least signifi-
cant bits. The value is in 2s-complement 17.11 fixed-point format.

mnemonic dZdyDomL

7-50

dZdyDomL

Name: Depth Derivative Y Dominant – Lower

Unit: Stencil/Depth

Tag: 0x013B

Reset Value: Undefined

Read/write

08162431

11 bit fraction Not used

This register holds part of the depth derivative per unit in Y used for the
dominant edge of a trapezoid, or along a line. dZdyDomU holds the most
significant bits, and dZdyDomL the least significant bits. The value is in
2s-complement 17.11 fixed-point format.

 dZdyDomU mnemonic

7-51 Graphics Register Reference

dZdyDomU

Name: Depth Derivative Y Dominant – Upper

Unit: Stencil/Depth

Tag: 0x013A

Reset Value: Undefined

Read/write

08162431

Not Used 16 bit integer

Sign

This register holds part of the depth derivative per unit in Y used for the
dominant edge of a trapezoid, or along a line. dZdyDomU holds the most
significant bits, and dZdyDomL the least significant bits. The value is in
2s-complement 17.11 fixed-point format.

mnemonic FBBlockColor

7-52

FBBlockColor

Name: Framebuffer Block Color

Unit: Framebuffer R/W

Tag: 0x0159

Reset Value: Undefined

Read/write

08162431

32 bit value

Contains the color (and optionally alpha value) to be written to the framebuffer
during block writes. Note the format is the raw data format of the framebuffer.

If the framebuffer is used in 8-bit packed mode, then data should be repeated
in all four bytes of the register.

If the framebuffer is in 16-bit packed mode then the data must be repeated in
both halves of the register.

Note that this register should not be updated immediately after a Render
command which performs a block write.

 FBColor mnemonic

7-53 Graphics Register Reference

FBColor

Name: Framebuffer Color Upload

Unit: Framebuffer R/W

Tag: 0x0153

Reset Value: Undefined

Read/write

08162431

32 bit framebuffer data

Internal register used in image upload. Note that this register should not be
written to. It is documented here to give the format and tag value of the data
returned through the Host Out FIFO.

The format is dependant on the raw framebuffer organization and any
reformatting which takes place due to the format specified in the DitherMode
register.

mnemonic FBData

7-54

FBData

Name: Framebuffer Data

Unit: Framebuffer R/W

Tag: 0x0154

Reset Value: Undefined

Write

08162431

32 bit value

Supplies the data for image download, where subsequent formatting is
required. The formatting can be achieved by means of the AlphaBlendMode
register to convert to the internal TVP4010 format, and then via the
DitherMode register to convert to the required format.

 FBHardwareWriteMask mnemonic

7-55 Graphics Register Reference

FBHardwareWriteMask

Name: Hardware Writemask

Unit: Framebuffer R/W

Tag: 0x0158

Reset Value: Undefined

Read/write

08162431

32 bit mask

Contains the hardware writemask for the framebuffer. If a bit is set to one then
the corresponding bit in the framebuffer is enabled for writing, otherwise it is
disabled. Only applicable to configurations where the framebuffer supports a
hardware writemask. In cases where it is not supported, this register should
not be written to.

If hardware writemasks are used then all the bits in the FBSoftwareWriteMask
register must be set to 1, so that software writemasking is disabled.

If the framebuffer is used in 8-bit packed mode, then an 8bit hardware write-
mask must be repeated in all four bytes of the FBHardwareWriteMask register.

If the framebuffer is in 16-bit packed mode then the 16 bit hardware writemask
must be repeated in both halves of the FBHardwareWriteMask register.

mnemonic FBPixelOffset

7-56

FBPixelOffset

Name: Framebuffer Pixel Offset

Unit: Framebuffer R/W

Tag: 0x0152

Reset Value: Undefined

Read/write

08162431

24 bit 2s-complement integerNot used

Offset between buffers when operating on multiple buffers in the framebuffer
at the same time (e.g. left/right/top/bottom in some OpenGL implementations).
The offset can be treated as signed or unsigned.

 FBReadMode mnemonic

7-57 Graphics Register Reference

FBReadMode

Name: Framebuffer Read Mode

Unit: Framebuffer R/W

Tag: 0x0150

Reset Value: Undefined

Read/write

08162431

PP2Reserved PP1 PP0

Partial product selection

ReadSource enable

ReadDestination enable

Data type

Window originPatch Enable

Packed data

Relative offset

Reserved

Patch Mode

Reserved

Reserved

Controls reading from framebuffer memory.

Incorrect data can be read if reads are enabled but the same data had just
been written with reads disabled. To avoid this problem, a WaitForCompletion
command should be sent after enabling reads, but prior to the next primitive.

Bit0–2 Partial Product 0 – See Appendix C for a table of
values.

Bit3–5 Partial Product 1 – See Appendix C for a table of
values.

Bit6–8 Partial Product 2 – See Appendix C for a table of
values.

Bit9 Read Source Enable:
0 = no read
1 = do read

Bit10 Read Destination Enable:
0 = no read
1 = do read

mnemonic FBReadMode

7-58

Bit15 Data Type:
0 = FBDefault – for data that may

be written back to the frame
buffer

1 = FBColor – for image upload

Bit16 Window Origin:
0 = Top left
1 = Bottom left

Bit18 Patch Enable:
0 = Disable
1 = Enable patched addressing

for framebuffer accesses

Bit19 PackedData:
0 = Disable. Force TVP4010 to

read one pixel at a time.
1 = Enable. Allow TVP4010 to

read multiple packed pixels
when possible.

Bit20–22 RelativeOffset
3 bit 2’s compliment value which
specifies the number of pixels
that the source data has to be
adjusted to align with the
destination data.

Bit25–26 Patch Mode
0 = Patch (suitable for depth

buffer patching)
1 = Subpatch (suitable for texture

buffer patching)
2 = SubpatchPack (suitable for

packed texture patching)

 FBReadPixel mnemonic

7-59 Graphics Register Reference

FBReadPixel

Name: Framebuffer Read Pixel

Unit: Framebuffer R/W

Tag: 0x015A

Reset Value: Undefined

Read/write

08162431

Reserved

Pixel Size

Sets the pixel size for reading from the framebuffer.

Bit0–1 Pixel Size:
0 = 8 bits
1 = 16 bits
2 = 32 bits

mnemonic FBSoftwareWriteMask

7-60

FBSoftwareWriteMask

Name: Software Writemask

Unit: Logic Op

Tag: 0x0104

Reset Value: Undefined

Read/write

08162431

32 bit mask

Contains the software writemask for the framebuffer. If a bit is set to one then
the corresponding bit in the framebuffer is enabled for writing, otherwise it is
disabled. In addition, whenever the writemask is other than all 1s, framebuffer
reads must be enabled by setting the ReadSourceEnable bit in the FBRead-
Mode register.

If hardware writemasks are used then all the bits in the software writemask
must be set to 1, so that software writemasking is disabled.

 FBSourceData mnemonic

7-61 Graphics Register Reference

FBSourceData

Name: Framebuffer Source Data

Unit: Framebuffer R/W

Tag: 0x0155

Reset Value: Undefined

Write

08162431

32–bit value

Supplies the data for image download with logic ops, where the data is treated
as the source rather than the destination parameter.

mnemonic FBSourceOffset

7-62

FBSourceOffset

Name: Framebuffer Source Offset

Unit: Framebuffer R/W

Tag: 0x0151

Reset Value: Undefined

Read/write

08162431

24 bit 2’s complement integerNot used

Sets the offset from destination to source for a copy operation in the frame
buffer i.e.;

source offset = destination address – source address

 FBWindowBase mnemonic

7-63 Graphics Register Reference

FBWindowBase

Name: Framebuffer Window Base

Unit: Framebuffer R/W

Tag: 0x0156

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

Contains the current base address of the window in the framebuffer.

mnemonic FBWriteData

7-64

FBWriteData

Name: Framebuffer Write Data

Unit: Logic Op

Tag: 0x106

Reset Value: Undefined

Read/write

08162431

32 bit data

Contains the color value to be written to the framebuffer when the
UseConstantFBWriteData bit of the LogicalOpMode register is set to one.
Note that the following conditions must be met for this mode of rendering to
be used:

� Flat shaded aliased primitive

� No dithering required

� No logical operation involving a destination factor

� No stencil or depth test

� No texture, fog or alpha blending

� No software writemasking

The data is in the raw format of the framebuffer. If the pixel size is 8 bits then
the data should be repeated in all four bytes. If the pixel size is 16 bits the data
should be repeated in both halves of the word.

Hardware writemasks can be used if available.

 FBWriteMode mnemonic

7-65 Graphics Register Reference

FBWriteMode

Name: Framebuffer Write Mode

Unit: Framebuffer R/W

Tag: 0x0157

Reset Value: Undefined

Read/write

08162431

Reserved

Write enable

Reserved

UpLoadData

Controls writing to the framebuffer.

Bit0 Write Enable:
0 = Disable
1 = Enable

Bit3 UpLoadData:
0 = No upload
2 = Upload color to host

mnemonic FilterMode

7-66

FilterMode

Name: Filter Mode

Unit: Host Out

Tag: 0x0180

Reset Value: Undefined

Read/write

08162431

Reserved Individual bits defined below

Controls culling of information from the output FIFO. If both tag and data are
specified, then the tag is always the first word in the FIFO.

Bit0–3 Diagnostic use only – set to zero.

Bit4 Depth Tag Filter: Used in–depth buffer image
upload.

0 = Cull Depth Tags from being
passed to output FIFO

1 = Pass Depth Tags to output
FIFO

Bit5 Depth Data Filter: Used in–depth buffer image
upload

0 = Cull Depth data values from
being passed to output FIFO

1 = Pass Depth data values to
output FIFO

Bit6 Stencil Tag Filter: Used in Stencil buffer image
upload

0 = Cull Stencil Tags from being
passed to output FIFO

1 = Pass Stencil Tags to output
FIFO

 FilterMode mnemonic

7-67 Graphics Register Reference

Bit7 Stencil Data Filter: Used in Stencil buffer image
upload
0 = Cull Stencil data values

from being passed out
put FIFO

1 = Pass Stencil data values
to output FIFO

Bit8 Color Tag Filter: Used in Framebuffer image
upload
0 = Cull Color Tags from being

passed to output FIFO
1 = Pass Color Tags to output

FIFO

Bit9 Color Data Filter: Used in Framebuffer image
upload
0 = Cull Color data values from

being passed to output
FIFO

1 = Pass Color data values to
output FIFO

Bit10 Synchronization Tag Filter:
0 = Cull Synchronization Tags

from being passed to output
FIFO

1 = Pass Synchronization Tags to
output FIFO

Bit11 Synchronization Data Filter:
0 = Cull Synchronization data

values from being passed to
output FIFO

1 = Pass Synchronization data
values to output FIFO

Bit12 Statistics Tag Filter: Used in Picking and Extent
read back
0 = Cull Statistics Tags from

being passed to
output FIFO

1 = Pass Statistics Tags to
output FIFO

mnemonic FilterMode

7-68

Bit13 Statistics Data Filter: Used in Picking and Extent
read back

0 = Cull Statistics data values
from being passed to output
FIFO

1 = Pass Statistics data values to
output FIFO

Bit14–15 Diagnostic use only – set to zero.

 FogColor mnemonic

7-69 Graphics Register Reference

FogColor

Name: Fog Color

Unit: Texture/Fog/Blend

Tag: 0x00D3

Reset Value: Undefined

Read/write

08162431

Alpha RedGreenBlueNot used Not used Not used Not used

Provides the color to be blended with the fragment color when fogging is
enabled.

mnemonic FogMode

7-70

FogMode

Name: Fog Mode

Unit: Texture/Fog/Blend

Tag: 0x00D2

Reset Value: Undefined

Read/write

08162431

Reserved

Fog Enable

Reserved

FogTest

Controls operation of the Fog unit.

Enabling FogTest causes fragments with negative fog values to be rejected.

Note that the FogEnable bit in the Render command must be set for fogging
to be applied to a primitive.

Bit0 Enable Fog:
0 = Disable
1 = Enable

Bit2 Fog Test:
0 = Disable
1 = Enable

 FStart mnemonic

7-71 Graphics Register Reference

FStart

Name: Initial Fog Value

Unit: Texture/Fog/Blend

Tag: 0x00D4

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Fog coefficient start value. Note the interpolation coefficient is used to blend the fragment
color with the color in the FogColor register. The value is in 2s-complement 2.16 fixed-point
format.

mnemonic GStart

7-72

GStart

Name: Initial Green Color

Unit: Color DDA

Tag: 0x00F3

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Green value for a vertex when in Gouraud
shading mode. The value is 2s-complement 6.11 fixed-point format.

 KdStart mnemonic

7-73 Graphics Register Reference

KdStart

Name: Initial Kd Value

Unit: Texture/Fog/Blend

Tag: 0x00DC

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Start value for diffuse light parameter when texture mapping using ramp application mode.
The value is in 2s-complement 2.16 fixed-point format.

mnemonic KsStart

7-74

KsStart

Name: Initial Ks Value

Unit: Texture/Fog/Blend

Tag: 0x00D9

Reset Value: Undefined

Read/write

08162431

Not used Fraction Not used

IntegerSign

Start value for specular light parameter when texture mapping using ramp application
mode. The value is in 2s-complement 2.16 fixed-point format.

 LBData mnemonic

7-75 Graphics Register Reference

LBData

Name: Localbuffer Data Download

Unit: Localbuffer R/W

Tag: 0x0113

Reset Value: Undefined

Write

08162431

Reserved 15 or 16-bit Depth value

1 bit Stencil value

Used to download depth and/or stencil data to localbuffer memory. Data should be
supplied in the raw localbuffer format.

mnemonic LBDepth

7-76

LBDepth

Name: Localbuffer Depth Upload

Unit: Localbuffer R/W

Tag: 0x0116

Reset Value: Undefined

Read/write

08162431

0 16-bit Depth value

Used to upload depth data from localbuffer memory. This register should not be written to.
It is documented here to give the tag value and format of the data when read from the Host
Out FIFO. If the depth buffer is less than 16 bits, the depth value is right justified and zero
extended.

 LBReadFormat mnemonic

7-77 Graphics Register Reference

LBReadFormat

Name: Localbuffer Read Format

Unit: Localbuffer R/W

Tag: 0x0111

Reset Value: Undefined

Read/write

08162431

Reserved

Depth Width

Stencil Width

Specifies the format used when reading from localbuffer memory. The effect
of creating a format with overlapping fields is undefined. There is no need to
synchronize the TVP4010 before changing this register.

Bit0–1 Depth Width:
0 = 16
1 = reserved
2 = reserved
3 = 15

Bit2–3 Stencil Width:
0 = 0
1 = reserved
2 = reserved
3 = 1

mnemonic LBReadMode

7-78

LBReadMode

Name: Localbuffer Read Mode

Unit: Localbuffer R/W

Tag: 0x0110

Reset Value: Undefined

Read/write

08162431

Reserved PP2Reserved PP1 PP0

Partial product selection

ReadSource enable

ReadDestination enable

Data Type

Window origin

Patch Enable

Controls reading from localbuffer memory.

Incorrect data can be read if reads are enabled but the same data had just
been written with reads disabled. To avoid this problem, a WaitForCompletion
command should be sent after enabling reads, but prior to the next primitive.

Bit0–2 Partial Product 0 – See Appendix C for a table of
values

Bit3–5 Partial Product 1 – See Appendix C for a table of
values

Bit6–8 Partial Product 2 – See Appendix C for a table of
values

Bit9 Read Source Enable:
0 = no read
1 = do read

Bit10 Read Destination Enable:
0 = no read
1 = do read

 LBReadMode mnemonic

7-79 Chapter Title—Attribute Reference

Bit16–17 Data Type:
0 = Default
1 = Localbuffer Stencil
2 = Localbuffer Depth

Bit18 Window Origin:
0 = Top left
1 = Bottom left

Bit19 Patch Enable
0 = Disable
1 = Enable patched addressing of

the localbuffer

mnemonic LBSourceOffset

7-80

LBSourceOffset

Name: Localbuffer Source Offset

Unit: Localbuffer R/W

Tag: 0x0112

Reset Value: Undefined

Read/write

08162431

24 bit signed integerNot used

Sets the offset from destination to source for a copy operation in the
localbuffer, i.e.:

source offset = destination address – source address

 LBStencil mnemonic

7-81 Graphics Register Reference

LBStencil

Name: Localbuffer Stencil Upload

Unit: Localbuffer R/W

Tag: 0x0115

Reset Value: Undefined

Read/Output

08162431

0

1 bit Stencil value

Used to upload stencil data from localbuffer memory. This register should not
be written to. It is documented here to give the tag value and format of the data
when read from the Host Out FIFO.

mnemonic LBWindowBase

7-82

LBWindowBase

Name: Localbuffer Window Base

Unit: Localbuffer R/W

Tag: 0x0117

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerNot used

Contains the current base address of the window in the localbuffer.

 LBWriteFormat mnemonic

7-83 Graphics Register Reference

LBWriteFormat

Name: Localbuffer Write Format

Unit: Localbuffer R/W

Tag: 0x0119

Reset Value: Undefined

Read/write

08162431

Reserved

Depth Width

Stencil Width

Specifies the format used when writing to localbuffer memory. The effect of
setting a configuration with overlapping fields is undefined.

Bit0–1 Depth Width:
0 = 16
1 = reserved
2 = reserved
3 = 15

Bit2–3 Stencil Width:
0 = 0
1 = reserved
2 = reserved
3 = 1

mnemonic LBWriteMode

7-84

LBWriteMode

Name: Localbuffer Write Mode

Unit: Localbuffer R/W

Tag: 0x0118

Reset Value: Undefined

Read/write

08162431

Reserved

Write Enable

Controls writing to the localbuffer.

Bit0 Write Enable:
0 = Disable
1 = Enable

 LogicalOpMode mnemonic

7-85 Graphics Register Reference

LogicalOpMode

Name: Logic Op Mode

Unit: Logic Op

Tag: 0x0105

Reset Value: Undefined

Read/write

08162431

Reserved

LogicalOp enable

UseConstantFBWriteData

LogicOp

Controls Logical Operations on the framebuffer.

The UseConstantFBWriteData bit when set to one, causes the color value in
the FBWriteData register to be written to the framebuffer, rather than the
fragment color. This can achieve higher bandwidth into the framebuffer for flat
shaded primitives, but may only be used when LogicalOps are disabled (bit 0
cleared to 0).

Bit0 Logic Op Enable:
0 = Disable
1 = Enable

Bit1–4 Logic Op:

Mode Name Operation Mode Name Operation

0 CLEAR 0 8 NOR ~(S | D)

1 AND S & D 9 EQUIV ~(S ^ D)

2 AND REVERSE S & ~D 10 INVERT ~D

3 COPY S 11 OR REVERSE S | ~D

4 AND INVERTED ~S & D 12 COPY INVERT ~S

5 NO–OP D 13 OR INVERT ~S | D

6 XOR S ^ D 14 NAND ~(S & D)

7 OR S | D 15 SET 1

Where: S = Source (fragment) color, D = Destination (framebuffer) color.

mnemonic LogicalOpMode

7-86

Bit5 UseConstantFBWriteData:
0 = Variable
1 = Constant

 MaxHitRegion mnemonic

7-87 Graphics Register Reference

MaxHitRegion

Name: Max Hit Region

Unit: Host Out

Tag: 0x0186

Reset Value: Undefined

Write

The format of the data input is:

08162431

Reserved

The format of the data output is:

08162431

16-bit 2s-complement integer Max X16-bit 2s-complement integer Max Y

This command causes the maximum coordinates of the hit region to be passed
to the Host Out FIFO, unless culled by the statistics bits in the FilterMode
register.

The corresponding tag value output is: 0x186.

mnemonic MaxRegion

7-88

MaxRegion

Name: Max Region

Unit: Host Out

Tag: 0x0183

Reset Value: Undefined

Read/write

08162431

16-bit 2s-complement integer Max X16-bit 2s-complement integer Max Y

This register has two uses:

1. During Picking it contains the maximum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial minimum (X,Y) extent, and
thereafter will be updated whenever an eligible fragment is generated which
has a higher X or Y value, with that higher value. Note that eligible fragments
can be either those that are written as pixels OR those that were rasterized,
but were culled from being drawn, as controlled by the StatisticMode register.

This register is unusual in that its contents are updated by the TVP4010 during
rendering, and so if read back, will not necessarily be the same as when
originally stored.

 MinHitRegion mnemonic

7-89 Graphics Register Reference

MinHitRegion

Name: Min Hit Region

Unit: Host Out

Tag: 0x0185

Reset Value: Undefined

Write

The format of the data input is:

08162431

Reserved

The format of the data output is:

08162431

16-bit 2s-complement integer Min X16-bit 2s-complement integer Min Y

This command causes the minimum coordinates of the hit region to be passed
to the Host Out FIFO, unless culled by the statistics bits in the FilterMode
register.

The corresponding tag value output is: 0x185.

mnemonic MinRegion

7-90

MinRegion

Name: Min Region

Unit: Host Out

Tag: 0x0182

Reset Value: Undefined

Read/write

08162431

16-bit 2s-complement integer Min X

16-bit 2s-complement integer Min Y

This register has two uses:

1. During Picking it contains the minimum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial maximum (X,Y) extent, and
thereafter will be updated whenever an eligible fragment is generated which
has a lower X or Y value, with that lower value. Note eligible fragments can be
either those that are written as pixels OR those that were rasterized, but were
culled from being drawn, as controlled by the StatisticMode register.

This register is unusual in that its contents are updated by the TVP4010 during
rendering, and so if read back, will not necessarily be the same as when
originally stored.

 PackedDataLimits mnemonic

7-91 Graphics Register Reference

PackedDataLimits

Name: Packed copy limits

Units: Framebuffer R/W

Tag: 0x002A

Reset Value: Undefined

Read/write

08162431

12 bit integer XStart Not used 12 bit integer XEndNot used

Sets the start and end limits in X for packed copies. Any pixels lying outside
the specified range are not plotted. This test is only active when the
PackedData bit in FBReadMode is enabled.

Bit0–11 XEnd: 12-bit 2s-complement value

Bit16–27 XStart: 12-bit 2s-complement value

mnemonic PickResult

7-92

PickResult

Name: Pick Result

Unit: Host Out

Tag: 0x0187

Reset Value: Undefined

Write

The format of the data input is:

08162431

Reserved

The format of the data output is:

08162431

Reserved

PickFlag

This command causes the current status of the picking result to be passed to
the Host Out FIFO, unless culled by the statistics bits in the FilterMode register.

The corresponding tag value output is: 0x187

Bit0 PickFlag:
0 = Miss
1 = Hit has occurred

Bit1 BusyFlag:
0 = Idle
1 = Busy – used to validate the
Pick Flag bit if this register is
polled directly

 QStart mnemonic

7-93 Graphics Register Reference

QStart

Name: Initial texture Q value

Unit: Texture Address

Tag: 0x0077

Reset Value: Undefined

Write

The format of the data input is:

08162431

ReservedFraction

Integer

Sign

Used to set the initial value for the Q coordinate when texture mapping. Format
is 2s-complement 2.27 fixed-point.

mnemonic RasterizerMode

7-94

RasterizerMode

Name: Rasterizer Mode

Unit: Rasterizer

Tag: 0x0014

Reset Value: Undefined

Read/write

08162431

Reserved

MirrorBitMask

InvertBitMask

FractionAdjust

BiasCoordinates

ForceBackgroundColor

BitMaskByteSwapMode

BitMaskPacking

BitMaskOffset

HostDataByteSwapMode

Reserved

BitMaskRelative

LimitsEnable

Defines the long term mode of operation of the Rasterizer.

Bit0 MirrorBitMask
0 = use bit mask from least to
most significant bit
1 = use bit mask from most to
least significant bit

Bit1 InvertBitMask
0 = test against bitmask
1 = test against inverted bitmask

Bit2–3 FractionAdjust These bits are for the Continue
NewLine command and specify how the fraction
bits in the Y and XDom DDAs are adjusted.

0 = No adjustment is done,
1 = Set the fraction bits to zero,
2 = Set the fraction bits to half.
3 = Set the fraction to nearly half,

i.e. 0x7FFF

 RasterizerMode mnemonic

7-95 Chapter Title—Attribute Reference

Bit4–5 BiasCoordinates These bits control how much is
added onto the StartXDom, StartXSub and StartY
values when they are loaded into the DDA units.
The original registers are not effected.

0 = Zero is added,
1 = Half is added
2 = Nearly half is added, i.e.

0x7FFF

Bit6 ForceBackgroundColor Controls operation of bit
mask test. If disabled any fragment failing the test
is discarded. If enabled any fragment failing the
test is drawn (other tests allowing) but the color is
taken from the Texel0 register. Used to support
foreground/background colors.

0 = disabled
1 = enabled

Bit7–8 BitMaskByteSwapMode. Controls byte swapping
for bitmask. Input ABCD.

0 = ABCD
1 = BADC
2 = CDAB
3 = DCBA

Bit9 BitMaskPacking.
0 = bitmask packed
1 = new data every scanline

Bit10–14 BitMaskOffset. Position of first bit to test in bit
mask.

Bit15–16 HostDataByteSwapMode. Controls byte
swapping for host data. Input ABCD.

0 = ABCD
1 = BADC
2 = CDAB
3 = DCBA

Bit18 LimitsEnable. Enable X and Y limits checking.
0 = disabled
1 = enabled

mnemonic RasterizerMode

7-96

Bit19 BitMaskRelative
0 = bitmask indexed by counter
1 = bitmask indexed by X position

 Render mnemonic

7-97 Graphics Register Reference

Render

Name: Render

Unit: Rasterizer

Tag: 0x0007

Reset Value: Undefined

Write

08162431

Reserved

AreaStippleEnable

Reserved

FastFill enable

Reserved

Primitive type

Reserved

SyncOnBitMask

Reserved

SyncOnHostData

Texture enable

SubPixelCorrectionEnable Fog enable

ReuseBitMask

Command to start the rendering process.

The data field defines the short term modes required by this primitive.

Bit0 AreaStippleEnable. Note that area stipple in the
Stipple Unit must be enabled as well for stippling
to occur.

0 = Disable
1 = Enable

Bit3 FastFillEnable
0 = Disable block filling
1 = Enable block filling

Bit6–7 PrimitiveType These bits indicate the type of
TVP4010 primitive to be drawn. The primitives
supported and the corresponding codes are:

0 = lines,
1 = trapezoids,
2 = points.

Bit11 SyncOnBitMask Enable bitmask test. Wait for
new bitmask when current one expires unless

mnemonic Render

7-98

SyncOnHostData or ReuseBitMask enabled.
0 = Disable
1 = Enable

Bit12 SyncOnHostData. When this bit is set, a fragment
is produced only when one of the following regis
ters has been written by the host: Depth, FBData,
FBSourceData, Stencil, Color or Texel0. Also Bit
MaskPattern if SyncOnBitMask is set.

0 = Disable
1 = Enable

Bit13 TextureEnable. Note that the Texture Units must
be suitably enabled as well for any texturing to
occur.

0 = Disable
1 = Enable

Bit14 FogEnable. Note that the Fog Unit must be
suitably enabled as well for any fogging to occur.

0 = Disable
1 = Enable

Bit16 SubPixelCorrectionEnable. Enables the sub pixel
correction of color, depth, fog and texture values
at the start of a scanline span.

0 = Disable
1 = Enable

Bit17 ReuseBitMask. Allows the bitmask to be reused
when it has expired; if enabled the Rasterizer will
not wait for a new mask when the current one has
been used.

0 = Disable
1 = Enable

 ResetPickResult mnemonic

7-99 Graphics Register Reference

ResetPickResult

Name: Reset Pick Result

Units: Host Out

Tag: 0x0184

Reset Value: Undefined

Write

08162431

Reserved

This command causes the current value of the picking result to be reset to
zero. The data field is not used.

mnemonic RStart

7-100

RStart

Name: Initial Red Color

Unit: Color DDA

Tag: 0x00F0

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Red value for a vertex when
in Gouraud shading mode. The value is 2s-complement 6.11 fixed-point
format.

 ScissorMaxXY mnemonic

7-101 Graphics Register Reference

ScissorMaxXY

Name: Scissor Rectangle – Maximum XY

Unit: Scissor/Stipple

Tag: 0x0032

Reset Value: Undefined

Read/write

08162431

Not used 12-bit 2s-complement Max Y Not used 12-bit 2s-complement Max X

Specifies the user scissor rectangle corner farthest from the screen origin.

mnemonic ScissorMinXY

7-102

ScissorMinXY

Name: Scissor Rectangle – Minimum XY

Unit: Scissor/Stipple

Tag: 0x0031

Reset Value: Undefined

Read/write

08162431

Not used 12-bit 2s-complement Min Y Not used 12-bit 2s-complement Min X

Specifies the user scissor rectangle corner closest to the screen origin.

 ScissorMode mnemonic

7-103 Graphics Register Reference

ScissorMode

Name: Scissor Mode

Unit: Scissor/Stipple

Tag: 0x0030

Reset Value: Undefined

Read/write

08162431

User scissor enable

Reserved

Screen scissor enable

Controls enabling of the screen and user scissor tests.

Bit0 User Scissor Enable:
0 = Disable
1 = Enable

Bit1 Screen Scissor Enable:
0 = Disable
1 = Enable

mnemonic ScreenSize

7-104

ScreenSize

Name: Screen Size

Unit: Scissor/Stipple

Tag: 0x0033

Reset Value: Undefined

Read/write

08162431

Not used 11 bit unsigned integer WidthNot used11 bit unsigned integer Height

Screen dimensions for screen scissor clip. The screen boundaries are (0, 0)
to (width – 1, height – 1) inclusive.

 SStart mnemonic

7-105 Graphics Register Reference

SStart

Name: Initial texture S value

Unit: Texture Address

Tag: 0x0071

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the initial value for the S coordinate when texture mapping. Format
is 2s-complement 12.18 fixed-point.

mnemonic StartXDom

7-106

StartXDom

Name: Start X Value – Dominant Edge

Unit: Rasterizer

Tag: 0x0000

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Initial X value for the dominant edge in trapezoid filling, or initial X value in line
drawing. The value is in 2s-complement 12.15 fixed-point format.

 StartXSub mnemonic

7-107 Graphics Register Reference

StartXSub

Name: Start X Value – Subordinate Edge

Unit: Rasterizer

Tag: 0x0002

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Initial X value for the subordinate edge in trapezoid filling. The value is in
2s-complement 12.15 fixed-point format.

mnemonic StartY

7-108

StartY

Name: Start Y Value

Unit: Rasterizer

Tag: 0x0004

Reset Value: Undefined

Read/write

08162431

Not used

Not used

14 bit fraction10 bit integer

Sign

Initial scanline in trapezoid filling, or initial Y position for line drawing. The value
is in 2s-complement 11.14 fixed-point format.

 StatisticMode mnemonic

7-109 Graphics Register Reference

StatisticMode
Name: Statistic Mode

Unit: Host Out

Tag: 0x0181

Reset Value: Undefined

Read/write

08162431

Reserved

Enable Stats

Stats Type

Monitor Pixels Written

Monitor Culled Fragments

Compare Function

Include Spans

Controls the mode of statistics collection.

Bit0 EnableStats:
0 = Disable Statistics collection
1 = Enable Statistics collection

Bit1 StatsType:
0 = Picking mode
1 = Extent collection

Bit2 Active Steps:
0 = Excludes Pixels that were
drawn
1 = Includes Pixels that were
drawn

Bit3 Passive Steps:
0 = Excludes fragments that were
culled from being drawn
1 = Includes fragments that were
culled from being drawn

Bit4 CompareFunction:
0 = Inside region
1 = Outside region

mnemonic StatisticMode

7-110

Bit5 Spans:
0 = Exclude block filled spans
1 = Include block filled spans

 Stencil mnemonic

7-111 Graphics Register Reference

Stencil

Name: Stencil

Unit: Stencil/Depth

Tag: 0x0133

Reset Value: Undefined

Read/write

08162431

Stencil

Reserved

The stencil value to be used in clearing down the stencil buffer, or in drawing
a primitive where the host supplies the stencil value.

mnemonic StencilData

7-112

StencilData

Name: Stencil Data

Unit: Stencil/Depth

Tag: 0x0132

Reset Value: Undefined

Read/write

08162431

Reference Stencil

Reserved Reserved Reserved

Compare MaskWrite Mask

Holds data used in the stencil test.

The stencil writemask controls which stencil planes are updated as a result of
the test.

Bit0 Reference Stencil is the reference value for the
stencil test.

Bit8 Compare Mask is the mask used to determine
which bits are significant in the comparison.

Bit16 Stencil Writemask is the mask used to determine
which bits in the localbuffer are updated.

 StencilMode mnemonic

7-113 Graphics Register Reference

StencilMode

Name: Stencil Mode

Unit: Stencil/Depth

Tag: 0x0131

Reset Value: Undefined

Read/write

08162431

Unit enable

Reserved func dppass

Update MethodStencil source

dpfailsfailsrc

Unsigned compare function

Controls the stencil test, which conditionally rejects fragments based on the
outcome of a comparison between the value in the stencil buffer and a
reference value in the StencilData register. If the test is LESS and the result
is true then the fragment value is less than the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1–3 Update Method if Depth test passes and Stencil
test passes: (see table below)

Bit4–6 Update Method if Depth test fails and Stencil test
passes: (see table below)

Bit7–9 Update Method if Stencil test fails:

Mode Method Result

0 Keep Source stencil

1 Zero 0

2 Replace Reference stencil

3 Increment Clamp (Source stencil + 1) to 2stencil width – 1

4 Decrement Clamp (Source stencil –1) to 0

5 Invert ~Source stencil

mnemonic StencilMode

7-114

Bit10–12 Unsigned Comparison Function:
Mode = Comparison Function

0 = NEVER
1 = LESS
2 = EQUAL
3 = LESS OR EQUAL
4 = GREATER
5 = NOT EQUAL
6 = GREATER OR EQUAL
7 = ALWAYS

Bit13–14 Stencil Source:
0 = Test Logic
1 = Stencil Register
2 = LBData
3 = LBSourceData

 SuspendUntilFrameblank mnemonic

7-115 Graphics Register Reference

SuspendUntilFrameblank

Name: Suspend until frameblank

Unit: Framebuffer R/W

Tag: 0x018F

Reset Value: Undefined

Write

08162431

32 bit integer address

This command causes all outstanding framebuffer writes to be flushed and
then suspension of framebuffer accesses until the next frameblank period.
The data field is the start address of the next frame to be displayed. This
address will be used from the next frameblank until a new address is supplied.

Bit0–31 Address

mnemonic Sync

7-116

Sync

Name: Synchronization

Unit: Host Out

Tag: 0x0188

Reset Value: Undefined

Write

08162431

31 user defined bits

Interrupt enable

This command can be used to synchronize the TVP4010 with the host. It is
also used to flush outstanding the TVP4010 operations such as pending
memory accesses. It also causes the current status of the picking result to be
passed to the Host Out FIFO, unless culled by the statistics bits in the Filter-
Mode register.

Bit0–30 User Defined

Bit31 InterruptEnable:
0 = Disable Interrupt for this
command
1 = Enable Interrupt for this
command

The data output is the value written to the register by this command. If
interrupts are enabled, then the interrupt does not occur until the tag and/or
data have been written to the output FIFO.

The corresponding tag value output is: 0x188

 Texel0 mnemonic

7-117 Graphics Register Reference

Texel0

Name: Texel Value

Unit: Texture/Fog/Blend

Tag: 0x00C0

Reset Value: Undefined

Read/write

08162431

Alpha RedGreenBlue

08162431

VAlpha U Y

The texel value can be loaded using the Rasterizer SyncOnHostData mode.
This is useful for direct application of procedural textures. It is also used when
downloading YUV data which needs to be converted to RGB; the YUV
conversion is done on the contents of this register.

This register is also used to supply the background color if ForceBackground-
Color has been enabled in either the RasterizerMode or the AreaStippleMode
registers.

mnemonic TexelLUT(0..15)

7-118

TexelLUT(0..15)

Name: Texel LUT entries 0 to 15

Unit: Texture Read

Tag: 0x01D0, ,0x1DF

Reset Value: Undefined

Read/write

08162431

RedGreenBlueNot used Not used Not used Not used

The value to be loaded into the specified texel look-up-table entry.

 TexelLUTMode mnemonic

7-119 Graphics Register Reference

TexelLUTMode

Name: Texel LUT Mode

Unit: Texture Read

Tag: 0x00CF

Reset Value: Undefined

Read/write

08162431

Reserved

Enable

Specifies the organization of the texture map in memory.

Bit0 Enable:
0 = No
1 = Lookup

mnemonic TextureAddressMode

7-120

TextureAddressMode

Name: Texture Address Mode

Unit: Texture Address

Tag: 0x0070

Reset Value: Undefined

Read/write

08162431

Reserved

Enable unit

Perspective Correction

Fast

Delta Format

Controls the calculation of texture addresses.

If bit 1 is set and bit2 is not, the TVP4010 performs accurate perspective
correction. If both bits are set, the TVP4010 performs fast perspective
correction. If both bits are cleared perspective correction is disabled.

Note that undesirable results may occur if bit 2 is set but bit 1 is not.

Note that the TextureEnable bit in the Render command must also be set for
addresses to be generated.

Bit0 Enable:
0 = Disable
1 = Enable

Bit1 Perspective Correction:
0 = Disable
1 = Enable

Bit2 Fast:
0 = Disable
1 = Enable fast perspective
correction (if Bit1 is also set)

 TextureAddressMode mnemonic

7-121 Graphics Register Reference

Bit3 Delta Format – Allows the TVP4010 to use texture
delta values generated by GLINT Delta

0 = Disable
1 = Enable

mnemonic TextureBaseAddress

7-122

TextureBaseAddress

Name: Texture Base Address

Unit: Texture Read

Tag: 0x00B0

Reset Value: Undefined

Read/write

08162431

reserved 24 bit unsigned integer

Base address of texture map. Specified in texels from the base of memory.

 TextureColorMode mnemonic

7-123 Graphics Register Reference

TextureColorMode
Name: Texture Color Mode

Unit: Texture/Fog/Blend

Tag: 0x00D0

Reset Value: Undefined

Read/write

08162431

Reserved

Texture Enable

Application Mode

Texture TypeKdDDA

KsDDA

Controls the application of texture. The KsDDA and KdDDA bits enable the
internal DDAs and should be set for modulate or highlight Ramp texture
application modes. The Texture Type field differentiates between Ramp and
RGB application modes. With Ramp Application Mode, various modes can be
simulataneously applied e.g., decal with highlight.

Note that the TextureEnable bit in the Render command must also be set for
a primitive to be texture mapped.

Bit0 Texture Enable:
0 = Disable
1 = Enable texture application

Bit1–3 Application Mode:
RGB Ramp
0 = Modulate Bit 1 = Decal
1 = Decal Bit 2 = Modulate
2 = Reserved Bit 3 = Highlight
3 = Copy

Bit4 Texture Type:
0 = RGB
1 = Ramp

Bit5 KdDDA:
0 = Disable
1 = Enable

mnemonic TextureColorMode

7-124

Bit6 KsDDA:
0 = Disable
1 = Enable

 TextureData mnemonic

7-125 Graphics Register Reference

TextureData

Name: Texture Data

Unit: Framebuffer R/W

Tag: 0x011D

Reset Value: Undefined

Write

08162431

Data

Used with TextureDownloadOffset to load raw texture data into memory. This
may include multiple texels depending on the texel size.

Bit0–31 Data

mnemonic TextureDataFormat

7-126

TextureDataFormat

Name: Texture Data Format

Unit: Texture Read

Tag: 0x00B2

Reset Value: Undefined

Read/write

08162431

Reserved

Texture Format

No Alpha Buffer

Color Order

Texture Format Extension

Specifies the color format of the texture map in memory.
See the register outline above for a description of the bit fields.

 TextureDataFormat mnemonic

7-127 Graphics Register Reference

Bit0–3 Texture Format:

Internal Color Channel

Format 3 Color Order Name R/Y G/U B/V A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24

1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15

2 BGR 4:4:4:4 4@0 4@4 4@8 4@12

5 BGR 3:3:2 Front 3@0 3@3 2@6 0

6 BGR 3:3:2 Back 3@8 3@11 2@14 0

9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7

10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15

11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0

12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0

13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31

14 BGR CI8 8@0 0 0 0

15 BGR CI4 4@0 0 0 0

16 BGR 5:6:5 Front 5@0 6@5 5@11 0

17 BGR 5:6:5 Back 5@16 6@21 5@27 0

18 BGR YUV411 8@0 8@8 8@16 8@24

19 BGR YUV422 8@0 8@8 8@8 0

0 RGB 8:8:8:8 8@16 8@8 8@0 8@24

1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15

2 RGB 4:4:4:4 4@8 4@4 4@0 4@12

5 RGB 3:3:2 Front 3@5 3@2 2@0 0

6 RGB 3:3:2 Back 3@13 3@10 2@8 0

9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7

10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15

11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0

12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0

13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31

14 RGB CI8 8@0 0 0 0

15 RGB CI4 4@0 0 0 0

16 RGB 5:6:5 Front 5@11 6@5 5@0 0

3) The format column is also dependant on bit16. n@m means n bits starting at bit m. Front and Back modes
replicate the color value to assist with double buffering. CI values are replicated into each byte to assist with
double buffering. Offset modes have 64 added to the 7 bit formatted value. If the format has no alpha bits, the
alpha field defaults to 0xF8.

mnemonic TextureDataFormat

7-128

Bit0–3 Texture Format:

Internal Color Channel

Format 4 Color Order Name R/Y G/U B/V A

17 RGB 5:6:5 Back 5@27 6@21 5@16 0

18 RGB YUV411 8@16 8@8 8@0 8@24

19 RGB YUV422 8@8 8@0 8@0 0

4) The format column is also dependant on bit16. n@m means n bits starting at bit m. Front and Back modes
replicate the color value to assist with double buffering. CI values are replicated into each byte to assist with
double buffering. Offset modes have 64 added to the 7 bit formatted value. If the format has no alpha bits, the
alpha field defaults to 0xF8.

Bit4 No Alpha Buffer:
0 = Alpha buffer present
1 = Alpha buffer not present

Bit5 Color Order:
0 = BGR
1 = RGB

Bit6 Texture Format Extension. Most significant bit
extension to Texture Format held in bits0–3.

 TextureDownloadOffset mnemonic

7-129 Graphics Register Reference

TextureDownloadOffset

Name: Texture Download Offset

Unit: Framebuffer R/W

Tag: 0x011E

Reset Value: Undefined

Write/Read

08162431

22-bit unsigned integer addressReserved

This is the 32-bit aligned address at which the texture load will start. Each write
to TextureData increments this value by one after the store has taken place.
Note, if this register is read back it will not necessarily contain the same value
as the written value.

Bit0–21 Address

mnemonic TextureMapFormat

7-130

TextureMapFormat

Name: Texture Map Format

Unit: Texture Read

Tag: 0x00B1

Reset Value: Undefined

Read/write

08162431

ReservedReserved PP1

Partial product selection

Window origin

SubPatch mode

Reserved

Texel Size

PP2 PP0

Specifies the organization of the texture map in memory.

Enabling subpatch addressing improves the performance of texture mapping
in typical situations.

Bit0–2 Partial Product 0 – See Appendix C for a table of
values

Bit3–5 Partial Product 1 – See Appendix C for a table of
values

Bit5–7 Partial Product 2 – See Appendix C for a table of
values

Bit16 Window Origin:
0 = Top
1 = Bottom Left

Bit17 Subpatch Mode:
0 = Disable
1 = Enable

 TextureMapFormat mnemonic

7-131 Graphics Register Reference

Bit19–20 Texel Size:
0 = 8 bits
1 = 16-bits
2 = 32 bits
3 = 4 bits

mnemonic TextureReadMode

7-132

TextureReadMode

Name: Texture Read Mode

Unit: Texture Read

Tag: 0x00CE

Reset Value: Undefined

Read/write

08162431

Reserved

TWrapMode

Enable

Reserved ReservedHeight Width

Packed Data Filter Mode SWrapMode

Controls texture read operations. When FilterMode is set, bilinear texture
mapping is performed otherwise nearest neighbor texture mapping occurs.
The S and TWrapModes specify the action to be taken when the S and T
coordinates fall outside the required range. Clamp is useful when texture
mapping a single image onto an object, Repeat cause the texture pattern to
be repeated, whilst mirror causes the texture pattern to be alternately
reversed. The Packed Data bit is used to define how texels are read from
memory. If this bit is cleared, each texel is read one at a time; if set several
texels can be read simultaneously improving efficiency. The actual number of
texels read in this case is dependant on the texel size.

Bit0 Enable
0 = Disable texture reads
1 = Enable texture reads

Bit1–2 SWrapMode
0 = Clamp
1 = Repeat
2 = Mirror

Bit3–4 TWrapMode
0 = Clamp
1 = Repeat
2 = Mirror

 TextureReadMode mnemonic

7-133 Graphics Register Reference

Bit9–12 Width – log2 texture map width

Bit13–16 Height – log2 texture map height

Bit17 FilterMode
0 = Disable bilinear texture
filtering
1 = Enable bilinear texture
filtering

Bit24 PackedData
0 = off
1 = on

mnemonic TStart

7-134

TStart

Name: Initial texture T value

Unit: Texture Address

Tag: 0x0074

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the initial value for the T coordinate when texture mapping. Format
is 2s-complement 12.18 fixed-point.

 WaitForCompletion mnemonic

7-135 Graphics Register Reference

WaitForCompletion

Name: Wait for completion

Unit: Rasterizer

Tag: 0x0017

Reset Value: Undefined

Write

08162431

Reserved

This command register causes the TVP4010 to suspend operation until all
framebuffer writes have completed. Useful to separate, say, a texture
download from subsequent primitives.

Bit0–31 Reserved

mnemonic Window

7-136

Window

Name: Window

Unit: Stencil/Depth

Tag: 0x0130

Reset Value: Undefined

Read/write

08162431

Reserved

Reserved

Force LB Update

LB UpdateSource

Disable LB Update

Reserved

If the Force LB Update bit is set, this overrides the stencil and depth tests, and
the per unit enables, to force the localbuffer to be updated. Writes must still be
enabled in the LBWriteMode register. When this bit is clear, any update is
conditional on the outcome of the stencil and depth tests.

If the Disable LB Update bit is set, the results of the stencil and depth tests are
overridden and the localbuffer not updated, even if localbuffer writes are
enabled. When writes are disabled in LBWriteMode there may be a
performance advantage in also setting Disable LB Update.

Bit3 Force LB Update:
0 = Not Forced
1 = Forced

Bit4 LB Update Source:
0 = LBSourceData
1 = Registers

Bit18 Disable LB Update
0 = enabled
1 = disabled

 WindowOrigin mnemonic

7-137 Graphics Register Reference

WindowOrigin

Name: Window Origin

Unit: Scissor/Stipple

Tag: 0x0039

Reset Value: Undefined

Read/write

08162431

Not used 12-bit 2s-complement X12-bit 2s-complement Y Not used

As each fragment is generated by the Rasterizer unit, this origin is added to
the coordinates of the fragment to generate its screen coordinates. This
occurs prior to doing the screen scissor test.

mnemonic XLimits

7-138

XLimits

Name: X extent for rasterizing

Unit: Rasterizer

Tag: 0x0019

Reset Value: Undefined

Read/write

08162431

Not used 12-bit 2s-complement X Min12-bit 2s-complement X Max Not used

Defines the X extent the Rasterizer should fill between.

 YLimits mnemonic

7-139 Graphics Register Reference

YLimits

Name: Y extent for rasterizing

Unit: Rasterizer

Tag: 0x0015

Reset Value: Undefined

Read/write

08162431

Not used 12-bit 2s-complement Y Min12-bit 2s-complement Y Max Not used

Defines the Y extent the Rasterizer should fill between.

mnemonic YUVMode

7-140

YUVMode

Name: YUV Mode

Unit: YUV

Tag: 0x01E0

Reset Value: Undefined

Read/write

08162431

Enable

TestMode

TestData

RejectTexel

TexelDisableUpdate

Reserved

Control YUV to RGB conversion and/or chroma test.

Bit0 Enable
0 = YUV to RGB color space
conversion disabled
1 = YUV to RGB color space
conversion enabled

Bit1–2 TestMode
0 = No chroma test
1 = Pass if within chroma bounds
2 = Fail if within chroma bounds

Bit3 TestData
0 = Apply chroma test on input

data (before color space
conversion if enabled)

1 = Apply chroma test on output
data (after color space
conversion if enabled)

 YUVMode mnemonic

7-141 Graphics Register Reference

Bit4 RejectTexel
0 = Do not plot pixel if chroma test

fails
1 = Do not texture pixel if chroma

test fails

Bit5 TexelDisableUpdate
0 = Pass on texel data
1 = Reject texel data immediately

after chroma test

mnemonic ZStartL

7-142

ZStartL

Name: Depth Start Value – Lower

Unit: Stencil/Depth

Tag: 0x0137

Reset Value: Undefined

Read/write

08162431

11 bit fraction Not used

This register holds part of the start value for depth interpolation. ZStartU holds
the most significant bits, and ZStartL the least significant bits. The combined
value is in 2s-complement 17.11 fixed-point format.

 ZStartU mnemonic

7-143 Graphics Register Reference

ZStartU

Name: Depth Start Value – Upper

Unit: Stencil/Depth

Tag: 0x0136

Reset Value: Undefined

Read/write

08162431

Not Used 16-bit integer

Sign

This register holds part of the start value for depth interpolation. ZStartU holds
the most significant bits, and ZStartL the least significant bits. The combined
value is in 2s-complement 17.11 fixed-point format.

mnemonic Running Title—Attribute Reference

7-144

8-1

Register Tables

The following tables list registers by: unit, name and register address, giving
their tag values and indicating their type. The register groups may be used to
improve data transfer rates to the TVP4010 when using DMA.

The following types of register are distinguished:

Control: Set state and control bits ready to draw a
primitive. This is the default and is indicated by a
blank entry in the “Type” column.

Command: Initiates some operation e.g. drawing of a
primitive.

Mixed: A control register which may also be used to
supply successive data values during download.

Output: An internal register that cannot be read or
written, but whose contents is passed to the Host Out
FIFO under the control of certain commands.

In addition, the table indicates whether the register can be read back. A blank
entry in this column indicates that the register contents cannot be read back.

Chapter 8

Register Tables

 8-2

Table 8–1. Registers by Unit

Unit Register Major Group
(hex)

Offset
(hex)

Type Readable

Rasterizer StartXDom 00 0 •

dXDom 00 1 •

StartXSub 00 2 •

dXSub 00 3 •

StartY 00 4 •

dY 00 5 •

Count 00 6 •

Render 00 7 Command

ContinueNewLine 00 8 Command

ContinueNewDom 00 9 Command

ContinueNewSub 00 A Command

Continue 00 B Command

BitMaskPattern 00 D Mixed

RasterizerMode 01 4 •

YLimits 01 5 •

WaitForCompletion 01 7 Command

XLimits 01 9 •

PackedDataLimits 02 A •

Scissor/Stipple ScissorMode 03 0 •

ScissorMinXY 03 1 •

ScissorMaxXY 03 2 •

ScreenSize 03 3 •

AreaStippleMode 03 4 •

WindowOrigin 03 9 •

AreaStipplePattern(0–7) 04 0–7 •

LBRead/Write LBReadMode 11 0 •

LBReadFormat 11 1 •

LBSourceOffset 11 2 •

LBData 11 3

LBStencil 11 5 Output

LBDepth 11 6 Output

LBWindowBase 11 7 •

LBWriteMode 11 8 •

Register Tables

8-3Register Tables

Table 8–1. Registers by Unit (Continued)

Unit Register Major Group
(hex)

Offset
(hex)

Type Readable

LBWriteFormat 11 9 •

Stencil/Depth Window 13 0 •

StencilMode 13 1 •

StencilData 13 2 •

Stencil 13 3 Mixed •

DepthMode 13 4 •

Depth 13 5 Mixed •

ZStartU 13 6 •

ZStartL 13 7 •

dZdxU 13 8 •

dZdxL 13 9 •

dZdyDomU 13 A •

dZdyDomL 13 B •

Texture Address TextureAddressMode 07 0 •

SStart 07 1 •

dSdx 07 2 •

dSdyDom 07 3 •

TStart 07 4 •

dTdx 07 5 •

dTdyDom 07 6 •

QStart 07 7 •

dQdx 07 8 •

dQdyDom 07 9 •

Texture Read TextureBaseAddress 0B 0 •

TextureMapFormat 0B 1 •

TextureDataFormat 0B 2 •

Texel0 0C 0 •

TextureReadMode 0C E •

TexelLUTMode 0C F •

TexelLUT(0–15) 1D 0–F •

YUV YUVMode 1E 0 •

ChromaUpperBound 1E 1 •

ChromaLowerBound 1E 2 •

Register Tables

 8-4

Table 8–1. Registers by Unit (Continued)

Unit Register Major Group
(hex)

Offset
(hex)

Type Readable

FBRead/Write FBReadMode 15 0 •

FBSourceOffset 15 1 •

FBPixelOffset 15 2 •

FBColor 15 3 Output

FBData 15 4 Mixed

FBSourceData 15 5 Mixed

FBWindowBase 15 6 •

FBWriteMode 15 7 •

FBHardwareWriteMask 15 8 •

FBBlockColor 15 9 •

FBReadPixel 15 A •

TextureData 11 D

TextureDownloadOffset 11 E •

Color DDA RStart 0F 0 •

dRdx 0F 1 •

dRdyDom 0F 2 •

GStart 0F 3 •

dGdx 0F 4 •

dGdyDom 0F 5 •

BStart 0F 6 •

dBdx 0F 7 •

dBdyDom 0F 8 •

AStart 0F 9 •

ColorDDAMode 0F C •

ConstantColor 0F D •

Color 0F E Mixed

Texture/Fog/Blend TextureColorMode 0D 0 •

FogMode 0D 2 •

FogColor 0D 3 •

FStart 0D 4 •

dFdx 0D 5 •

dFdyDom 0D 6 •

KsStart 0D 9 •

Register Tables

8-5Register Tables

Table 8–1. Registers by Unit (Continued)

Unit Register Major Group
(hex)

Offset
(hex)

Type Readable

dKsdx 0D A •

dKsdyDom 0D B •

KdStart 0D C •

dKddx 0D D •

dKddyDom 0D E •

AlphaBlendMode 10 2 •

Color Format DitherMode 10 3 •

Logical Ops FBSoftwareWriteMask 10 4 •

LogicalOpMode 10 5 •

FBWriteData 10 6 •

Host Out FilterMode 18 0 •

StatisticMode 18 1 •

MinRegion 18 2 •

MaxRegion 18 3 •

ResetPickResult 18 4 Command

MinHitRegion 18 5 Command

MaxHitRegion 18 6 Command

PickResult 18 7 Command •

Sync 18 8 Command

SuspendUntilFrameBlank 18 F Command

Register Tables

 8-6

Table 8–2. Registers by Name

Register Major Group
(hex)

Offset
(hex)

Type Readable

AlphaBlendMode 10 2 •

AreaStippleMode 03 4 •

AreaStipplePattern(0–7) 04 0–7 •

AStart 0F 9 •

BitMaskPattern 00 D Mixed

BStart 0F 6 •

ChromaLowerBound 1E 2 •

ChromaUpperBound 1E 1 •

Color 0F E Mixed

ColorDDAMode 0F C •

ConstantColor 0F D •

Continue 00 B Command

ContinueNewDom 00 9 Command

ContinueNewLine 00 8 Command

ContinueNewSub 00 A Command

Count 00 6 •

dBdx 0F 7 •

dBdyDom 0F 8 •

Depth 13 5 Mixed •

DepthMode 13 4 •

dFdx 0D 5 •

dFdyDom 0D 6 •

dGdx 0F 4 •

dGdyDom 0F 5 •

DitherMode 10 3 •

dKddx 0D D •

dKddyDom 0D E •

dKsdx 0D A •

dKsdyDom 0D B •

dQdx 07 8 •

dQdyDom 07 9 •

dRdx 0F 1 •

dRdyDom 0F 2 •

Register Tables

8-7Register Tables

Table 8–2. Registers by Name (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

dSdx 07 2 •

dSdyDom 07 3 •

dTdx 07 5 •

dTdyDom 07 6 •

dXDom 00 1 •

dXSub 00 3 •

dY 00 5 •

dZdxL 13 9 •

dZdxU 13 8 •

dZdyDomL 13 B •

dZdyDomU 13 A •

FBBlockColor 15 9 •

FBColor 15 3 Output

FBData 15 4 Mixed

FBHardwareWriteMask 15 8 •

FBPixelOffset 15 2 •

FBReadMode 15 0 •

FBReadPixel 15 A •

FBSoftwareWriteMask 10 4 •

FBSourceData 15 5 Mixed

FBSourceOffset 15 1 •

FBWindowBase 15 6 •

FBWriteData 10 6 •

FBWriteMode 15 7 •

FilterMode 18 0 •

FogColor 0D 3 •

FogMode 0D 2 •

FStart 0D 4 •

GStart 0F 3 •

KdStart 0D C •

KsStart 0D 9 •

LBData 11 3

LBDepth 11 6 Output

Register Tables

 8-8

Table 8–2. Registers by Name (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

LBReadFormat 11 1 •

LBReadMode 11 0 •

LBSourceOffset 11 2 •

LBStencil 11 5 Output

LBWindowBase 11 7 •

LBWriteFormat 11 9 •

LBWriteMode 11 8 •

LogicalOpMode 10 5 •

MaxHitRegion 18 6 Command

MaxRegion 18 3 •

MinHitRegion 18 5 Command

MinRegion 18 2 •

PackedDataLimits 02 A •

PickResult 18 7 Command •

QStart 07 7 •

RasterizerMode 01 4 •

Render 00 7 Command

ResetPickResult 18 4 Command

RStart 0F 0 •

ScissorMaxXY 03 2 •

ScissorMinXY 03 1 •

ScissorMode 03 0 •

ScreenSize 03 3 •

SStart 07 1 •

StartXDom 00 0 •

StartXSub 00 2 •

StartY 00 4 •

StatisticMode 18 1 •

Stencil 13 3 Mixed •

StencilData 13 2 •

StencilMode 13 1 •

SuspendUntilFrameBlank 18 F Command

Sync 18 8 Command

Register Tables

8-9Register Tables

Table 8–2. Registers by Name (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

Texel0 0C 0 •

TexelLUT(0–15) 1D 0–F •

TexelLUTMode 0C F •

TextureAddressMode 07 0 •

TextureBaseAddress 0B 0 •

TextureColorMode 0D 0 •

TextureData 11 D

TextureDataFormat 0B 2 •

TextureDownloadOffset 11 E •

TextureMapFormat 0B 1 •

TextureReadMode 0C E •

TStart 07 4 •

WaitForCompletion 01 7 Command

Window 13 0 •

WindowOrigin 03 9 •

XLimits 01 9 •

YLimits 01 5 •

YUVMode 1E 0 •

ZStartL 13 7 •

ZStartU 13 6 •

Table 8–3. Registers by Address

Register Major Group
(hex)

Offset
(hex)

Type Readable

StartXDom 00 0 •

dXDom 00 1 •

StartXSub 00 2 •

dXSub 00 3 •

StartY 00 4 •

dY 00 5 •

Count 00 6 •

Render 00 7 Command

ContinueNewLine 00 8 Command

Register Tables

 8-10

Table 8–3. Registers by Address (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

ContinueNewDom 00 9 Command

ContinueNewSub 00 A Command

Continue 00 B Command

BitMaskPattern 00 D Mixed

RasterizerMode 01 4 •

YLimits 01 5 •

WaitForCompletion 01 7 Command

XLimits 01 9 •

PackedDataLimits 02 A •

ScissorMode 03 0 •

ScissorMinXY 03 1 •

ScissorMaxXY 03 2 •

ScreenSize 03 3 •

AreaStippleMode 03 4 •

WindowOrigin 03 9 •

AreaStipplePattern(0–7) 04 0–7 •

TextureAddressMode 07 0 •

SStart 07 1 •

dSdx 07 2 •

dSdyDom 07 3 •

TStart 07 4 •

dTdx 07 5 •

dTdyDom 07 6 •

QStart 07 7 •

dQdx 07 8 •

dQdyDom 07 9 •

TextureBaseAddress 0B 0 •

TextureMapFormat 0B 1 •

TextureDataFormat 0B 2 •

Texel0 0C 0 •

TextureReadMode 0C E •

TexelLUTMode 0C F •

Register Tables

8-11Register Tables

Table 8–3. Registers by Address (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

TextureColorMode 0D 0 •

FogMode 0D 2 •

FogColor 0D 3 •

FStart 0D 4 •

dFdx 0D 5 •

dFdyDom 0D 6 •

KsStart 0D 9 •

dKsdx 0D A •

dKsdyDom 0D B •

KdStart 0D C •

dKddx 0D D •

dKddyDom 0D E •

RStart 0F 0 •

dRdx 0F 1 •

dRdyDom 0F 2 •

GStart 0F 3 •

dGdx 0F 4 •

dGdyDom 0F 5 •

BStart 0F 6 •

dBdx 0F 7 •

dBdyDom 0F 8 •

AStart 0F 9 •

ColorDDAMode 0F C •

ConstantColor 0F D •

Color 0F E Mixed

AlphaBlendMode 10 2 •

DitherMode 10 3 •

FBSoftwareWriteMask 10 4 •

LogicalOpMode 10 5 •

FBWriteData 10 6 •

LBReadMode 11 0 •

LBReadFormat 11 1 •

LBSourceOffset 11 2 •

Register Tables

 8-12

Table 8–3. Registers by Address (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

LBData 11 3

LBStencil 11 5 Output

LBDepth 11 6 Output

LBWindowBase 11 7 •

LBWriteMode 11 8 •

LBWriteFormat 11 9 •

TextureData 11 D

TextureDownloadOffset 11 E •

Window 13 0 •

StencilMode 13 1 •

StencilData 13 2 •

Stencil 13 3 Mixed •

DepthMode 13 4 •

Depth 13 5 Mixed •

ZStartU 13 6 •

ZStartL 13 7 •

dZdxU 13 8 •

dZdxL 13 9 •

dZdyDomU 13 A •

dZdyDomL 13 B •

FBReadMode 15 0 •

FBSourceOffset 15 1 •

FBPixelOffset 15 2 •

FBColor 15 3 Output

FBData 15 4 Mixed

FBSourceData 15 5 Mixed

FBWindowBase 15 6 •

FBWriteMode 15 7 •

FBHardwareWriteMask 15 8 •

FBBlockColor 15 9 •

FBReadPixel 15 A •

FilterMode 18 0 •

StatisticMode 18 1 •

Register Tables

8-13Register Tables

Table 8–3. Registers by Address (Continued)

Register Major Group
(hex)

Offset
(hex)

Type Readable

MinRegion 18 2 •

MaxRegion 18 3 •

ResetPickResult 18 4 Command

MinHitRegion 18 5 Command

MaxHitRegion 18 6 Command

PickResult 18 7 Command •

Sync 18 8 Command

SuspendUntilFrameBlank 18 F Command

TexelLUT(0–15) 1D 0–F •

YUVMode 1E 0 •

ChromaUpperBound 1E 1 •

ChromaLowerBound 1E 2 •

Register Tables

 8-14

A-1

Appendix A

 Pseudocode Definitions

In many areas of the document fragments of pseudocode are given, to
describe the loading of registers. These are based on a C interface to
TVP4010 in which each 32-bit register is represented as a C structure,
potentially split into a series of bitfields. In an example where only a subset of
the bitfields in a register are set, it is assumed either that a software copy of
the register is being modified, or that the current contents of the register has
first been read back to the host. This style has been chosen for clarity; there
are often more efficient strategies.

Note the constant definitions and register bitfield definitions are those used in
the C example programs, for which header files are given in Appendix E.

Warning: the order of loading control registers into the
HyperPipeline has also been chosen for clarity, rather than
effinciency. The optimal order is documented in section 3.2.3.

Loading of a TVP4010 register is expressed as:

register–name(value)

When writing directly to the register file (i.e. to a FIFO) this would be
implemented by writing “value” to the mapped–in address of the register called
“register–name”.

Fragmentary examples are not in strict C syntax, a typical example is:

// Sample code to rasterize a 10x10 rectangle at the

// framebuffer origin.

StartXDom (0) // Start dominant edge

StartXSub (1<<16) // Start of subordinate

dXDom (0x0)

dXSub (0x0)

Appendix A

Pseudocode Definitions

A-2

Count (0xA)

YStart(0)

dY (1<<16)

// Set up to render a trapezoid.

render.AreaStippleEnable = TVP4010_DISABLE

render.PrimitiveType = TVP4010_TRAPEZOID

render.FastFillEnable = TVP4010_DISABLE

render.FogEnable = TVP4010_DISABLE

render.TextureEnable = TVP4010_DISABLE

render.ReuseBitMask = TVP4010_DISABLE

render.SyncOnBitMask = TVP4010_FALSE

render.SyncOnHostData = TVP4010_FALSE

Render (render) // Render the rectangle

Code is shown in courier and comments are C++ style “//” indicating that the
rest of the line is a comment. Any statement which ends in parenthesis is a
register update, other statements will generally be assignments. A variable,
say render, is of a type associated with the register being modified. This will
usually be clear by the context and will not usually be declared as such. All the
type definitions are in the header files. The values assigned to a register will
be either a variable as described above, a macro i.e., TVP4010_TRUE, as
found in the headers, or an immediate constant in C style format i.e., 0x45. In
registers which have several fields, some of which are not relevant to a
particular example, the field can be ignored completely or set to don’t care.
In some registers, values for fields which need to be set but are not readily
available will typically be set as appropriate.

In some fragments, simply a list of commands is given, e.g.:

// Sample code to rasterize a rectangle

StartXDom () // Start dominant edge

StartXSub () // Start of subordinate

dXDom ()

dXSub ()

Count ()

YStart()

dY ()

// Set–up to render an aliased trapezoid.

Render () // Render the rectangle

 Pseudocode Definitions

A-3 Pseudocode Definitions

This technique is used to simply give a feel for the registers involved in a
particular operation and where a detailed treatment is not warranted.

To take the address of a register, the name is used, thus this example stores
the address of the StartXDom register in the buffer pointed to by the variable
buf and increments the pointer:

*buf++ = StartXDom

To test the value of a register the register name is dereferenced using the C
“*” operator as for instance in this example which tests for the completion of
a DMA operation:

while(*DMACount != 0) ;

A-4

B-1

Appendix A

Screen Widths Table

The screen width is specified as the sum of selected partial products so a full
multiply operation is not needed. The partial products are selected by the fields
PP0, PP1 and PP2 in the FBReadMode register, LBReadMode register and
TextureMapFormat register. The range of widths supported by this technique
are tabulated below, together with the values for each of the PP fields.

Table B–1. Partial Products

Screen Width PP2 PP1 PP0

0 0 0 0

32 0 0 1

64 0 1 1

96 1 1 1

128 1 1 2

160 1 2 2

192 2 2 2

224 1 2 3

256 2 2 3

288 1 3 3

320 2 3 3

384 3 3 3

416 1 3 4

448 2 3 4

512 3 3 4

544 1 4 4

576 2 4 4

640 3 4 4

768 4 4 4

800 1 4 5

832 2 4 5

896 3 4 5

Appendix B

Screen Widths Table

B-2

Table B–1. Partial Products(Continued)

Screen Width PP2 PP1 PP0

1024 4 4 5

1056 1 5 5

1088 2 5 5

1152 3 5 5

1280 4 5 5

1536 5 5 5

Note that the TVP4010 supports a maximum screen resolution of 1536 in width
and 1024 in height.

C-1

Appendix A

Glossary

A
accumlation buffer: A color buffer of higher resolution than the displayed

buffer (typically 16bits per component for an 8bit per component display).
Typically used to sum the result of rendering several frames from slightly
different viewpoints to achieve motion blur effects or eliminate aliasing
effects.:

activefragment: A fragment which passes all the various culling tests, such
as scissor, depth(Z), alpha, etc., is written to/combined with the
corresponding pixel in the framebuffer. See also “fragment” and “passive
fragment”.

aliasing: A phenomena resulting from a rendering style which ignores the
fact that a pixel may not be wholly covered by a primitive, leading to
jagged edges on primitives.

alpha blending: The ability to combine supplied Red, Green and Blue color
values with those that exist in the framebuffer according to the supplied
alpha value. Alpha blending forms the basis for techniques such as
transparency and painting.

alpha buffer: A memory buffer containing the fourth component of a pixel’s
color in addition to Red, Green and Blue. This component is not
displayed, but may be used for instance to control color blending.

area stipple: A two dimensional binary pattern which is used to cull
fragments from being drawn.

B
bitblt: Bit aligned block transfer. Copy of a rectangular array of pixels in a

bitmap from one location to another.

bitblt double buffering: A technique to provide independent windowed
double buffering by blting an area from one buffer to the other.

Appendix C

Glossary

C-2

bitplane double buffering: A technique whereby fast independent
windowed double buffering can be achieved by using a single bitplane
bit.

block write: A feature provided in some memory devices such as VRAM
and SGRAM which allows multiple pixels to be set to a given value by a
single write. Fast fill is an alternative name for this feature.

C
chroma keying: Also known as bluescreening, this is the practice of

excluding color from an image allowing an underlying image to show
through.

chroma test: The means by which chroma keying can be achieved.

color index: The mode in which the color information is stored for each pixel
as a single number, the color index rather than as separate Red, Green,
Blue and optionally Alpha values (RGBA mode). Each color index
references an entry in a color look up table that contains a particular set
of Red, Green and Blue values.

command register: A register which when loaded triggers activity in
TVP4010. For instance the Render command register when loaded will
cause TVP4010 to start rendering the specified primitive with the
parameters currently set up in the control registers.

context: The state information associated with a particular task. Typically in
a system more than one task will be using TVP4010 to render primitives.
Software on the host must save away the current contents of the
TVP4010 control registers when suspending one task to allow another
to run, and must restore the state when that task is next scheduled to run.

control register: A register which contains state that dictates how TVP4010
will execute a command.

culling: The process of eliminating a fragment, object face, or primitive, so
that it is not drawn.

D
DDA: Digital Differential Analyser. An algorithm for determining the pixels to

draw along a line or polygon edge. Also used to interpolate linearly
varying values such as color and depth.

delta: A gradient of color, fog, depth etc. in the X or Y directions for a
primitive.

 Glossary

C-3 Glossary

depth (Z) buffer: A memory buffer containing the depth component of a
pixel. Used to, for example, eliminate hidden surfaces.

depth-cueing: A technique which determines the color of a pixel based on
its depth. Used, for instance, to fade far away objects into the
background. Also known as fogging.

dithering: A rendering style which increases the perceived range of
displayed colors at the cost of spatial resolution. The technique is similar
to the use of stippled patterns of black and white pixels, to achieve
shades of grey on a black and white display.

dominant edge: The side of a primitive such as a triangle, which has the
greatest range of Y values.

double-buffering: A technique for achieving smooth animation, by
rendering only to an undisplayed back buffer, and then swapping the
back buffer to the front once drawing is complete.

E
extent checking: A technique which determines the rectangular bounds of

the area which has been rendered to.

F
fast fill: A feature provided in some memory devices such as VRAM and

SGRAM which allows multiple pixels to be set to a given value by a single
write. Block write is an alternative name for this feature.

flat shading: The constant color shading or area filling of a primitive.

fogging: A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the background.
Also known as depth-cueing.

fragment: A fragment is an object generated as a result of the rasterization
of a primitive. It corresponds to and contains all the components of a
single pixel. If a fragment passes all the various culling tests, such as
scissor, depth(Z), stencil, etc., it will be written to/combined with the
corresponding pixel in the framebuffer.

framebuffer: An area of memory containing the displayable color buffers
(front, back, left, right, overlay, underlay), their (optional) associated
alpha components, and any associated (optional) window control
information. This memory is typically separate from the localbuffer.

Glossary

C-4

G

Gouraud shading: The technique of variable color shading or area filling of
a primitive using interpolation to gradually vary the color between
vertices. Often known as smooth shading.

H
hardware writemask: A bitmask implemented in memory devices such as

VRAM and SGRAM to enable or inhibit the writing of the corresponding
bits of a fragment’s color into the framebuffer.

host: The processor which controls TVP4010.

L
localbuffer: An area of memory which may be used to store textures and/or

non-displayable depth(Z) and/or stencil pixel information. This memory
is typically separate from the framebuffer.

logic ops: The technique of applying logical operations such as OR, XOR
or AND to the fragment color values and/or those in the framebuffer.

LUT: A look-up-table. This normally contains color values to allow mapping
from an index value to the desired Red, Green and Blue value.

O
overlays: The technique of ensuring certain drawn objects always remain

foremost in view and not obscured by others. Historically this was one
method of providing a cursor and was usually achieved by providing
extra bit planes.

P
packed data: The arrangement of data in a buffer which allows multiple

pixels to be read or written in a single access.

passive fragment: A fragment which fails one or more of the various culling
tests, such as scissor, depth(Z), stencil, etc., is nor written to/combined
with the corresponding pixel in the framebuffer. See also “fragment” and
“active fragment”.

 Glossary

C-5 Glossary

patched addressing: A technique whereby data is organized in memory
such that there is improved performance for accesses to adjacent
scanlines in a buffer. For TVP4010, this is available for depth and/or
stencil buffer accesses. For textures a special form, subpatch
addressing is provided.

picking: A means of selecting drawn objects or primitives.

preMult: A method of alpha blending, also known as Ramp blend mode,
used by QuickDraw3D.

pixel: Picture element. A pixel comprises the bits in all the buffers (whether
stored in the localbuffer or framebuffer), corresponding to a particular
location in the framebuffer.

primative: A geometric object to be rendered. The TVP4010 primitives are
points, lines, trapezoids (including triangles as a subset), and bitmaps.

R

Ramp blend mode: A method of alpha blending, also known as preMult,
used by QuickDraw3D.

rasterization: The act of converting a point, line, polygon, or bitmap, in
device coordinates, into fragments.

rendering: Conversion of primitives in object coordinates into an image.

S

scissor test: A means of culling fragments which lie outside the defined
scissor rectangle. The scissor rectangle is defined in device coordinates.

software writemasking: A means of simulating hardware writemasking by
performing a read-modify-write operation on framebuffer data.

stencil buffer: A buffer used to store information about a pixel which
controls how subsequent stencilled fragments at the same location may
be combined with its current value. Typically used to mask complex
two-dimensional shapes.

stipple: A one or two dimensional binary pattern which is used to cull
fragments from being drawn.

subordinate edge: The sides of a primitive such as a triangle, which do not
have the greatest range of Y values.

Glossary

C-6

subpatch addressing: A technique whereby data is organized in memory
such that there is improved performance for accesses to adjacent
scanlines in a buffer. For TVP4010, this particular form of patched
addressing is available for accessing texture maps. See also Patch
Addressing.

subpixel correction: A means of ensuring that all interpolated parameters
associated with a fragment (color, depth, fog, texture) are correctly
sampled at the fragment’s center. This is required, for example, to ensure
correct color shading of objects comprised of many primitives.

T
tag: The data item that uniquely identifies a Graphics Core register.

task: A process, or thread on the host which uses the TVP4010
co-processor. Typically tasks assume that they have sole use of
TVP4010 and rely on a device driver to save and restore their TVP4010
context, when they are swapped out.

texel: Texture element. An element of an image stored in texture memory
which represents the color of the texture to be applied (fully or in part) to
a corresponding fragment.

texture: An image used to modify the color of fragments during processing.
Often used for instance to achieve high realism in a scene, with relatively
few primitives.

texture mapping: The process of applying a two dimensional image to a
primitive. For instance to apply a wood grain effect to a table.

W
writemask: A bit pattern used to enable or inhibit the writing of the

corresponding bits of a fragment’s color into the framebuffer. See also
Software Writemask and Hardware Writemask.

Y
YUV: An alternative color format to RGB, also known as YCbCr. Color format

used by MPEG.

Z
Z buffer: An alternative name for the depth buffer.

Index

Index-1

Index

A
accumulation buffer, 4-16
aliasing, 4-54
Alpha blend, 4-72
Alpha Blend unit, 2-24
Alpha blend unit, 3-7, 4-77, 5-7
Alpha blending, 3-8, 3-10, 4-2, 4-15, 4-60, 4-62,

4-64, 4-76, 4-77, 4-79, 4-84, 5-9, 5-10, G-3, G-64
alpha buffer, 4-54, 4-76, G-4, G-128
alpha channel, 3-7
alpha color, G-9
AlphaBlendMode, 2-24, 3-8, 4-76, 4-77, 4-79, 5-7,

5-10, G-54, 8-5, 8-6, 8-11
Application Initialization, 5-10
area stipple, 3-10, 4-28, 4-33, 4-34, 4-35, 4-36, G-6,

G-8, G-97
Area Stippling, 4-33
AreaStippleMode, 4-27, 4-33, 4-34, 4-36, 5-10, G-3,

G-6, G-8, G-117, 8-2, 8-6, 8-10
AreaStipplePattern, 2-12, 4-35, 4-36, G-8, 8-2, 8-6,

8-10
AStart, 4-70, G-9, 8-4, 8-6, 8-11

B
back buffer, 2-21, 3-5
big–endian, 2-23
bilinear filter, 4-54
bilinear filtering, 4-54
bilinear texture mapping, 4-53, G-132, G-133
bitblt, 3-6, 3-12, 3-15
bitblt Double Buffering, 3-12
bitblt double buffering, 3-15
bitmap, 4-18, 4-19

Bitmaps, 4-17, 4-19
bitmaps, 3-2, 3-6
bitmask, 4-17, 4-18, 4-21, 4-27, 4-28, 4-30, G-95,

G-98
bitmask packing, 4-22, 4-30, G-95
bitmask pattern, 3-10
bitmask test, 4-42, 4-44, 4-78, G-10, G-97
BitMaskPattern, 4-17, 4-18, 4-28, 4-31, G-10, G-98,

8-2, 8-6, 8-10
bitmasks, 2-23
bitplane double buffering, 3-15
block fills, 4-19
Block write, 4-16
block write, 3-10, 4-19
Block Writes, 4-19
block writes, 3-10, 4-16, 4-84, 6-6, G-52
BlockWrites, 3-10
BStart, 4-6, 4-70, 4-71, 4-80, G-11, 8-4, 8-6, 8-11
bypass, 1-4, 2-19, 2-21, 3-14, 3-15, 3-16, 5-11
Bypass Initialization, 5-11
bypass writemask, 5-11
byte swap, 2-2
byte swapped, 4-22
Byte Swapping, 2-23
byte swapping, 2-21, 4-22, 4-30, 4-64, G-95

C
Chroma Test, 6-13
chroma test, 4-2, 4-58, 4-59, 6-13, G-12, G-140
ChromaLowerBound, 4-59, G-12, 8-3, 8-6, 8-13
ChromaUpperBound, 4-59, G-12, 8-3, 8-6, 8-13
CI, 3-8, 3-9, 4-54, 4-68, 4-81, 4-85, G-4, G-13, G-15,

G-31, G-127, G-128
CI4, 3-8
clear bit planes, 3-7

Index

Index-2

Clears, 6-6
Color, 2-11, 2-16, 3-8, 4-28, 4-63, 4-77, 4-88, 4-89,

5-6, G-13, G-67, G-98, 8-4, 8-6, 8-11
Color buffers, 3-5

Color DDA, 4-21

Color DDA unit, 4-2, 4-58, 4-68, 4-69, 4-70, 4-73,
4-78, 4-80, G-9, G-11, G-13, G-14, G-15, G-21,
G-22, G-28, G-29, G-39, G-40, G-72, G-100, 8-4

Color Format, 4-69, 5-7, G-4, G-5, G-31, G-32

color format, 3-7, 3-8, 4-21, 4-54, 4-55, 4-58, 4-63,
4-79, 4-82, 5-2, 5-7, 6-9, 6-11, G-3, G-13, G-15,
G-126

Color Format Examples, 4-82

Color Format Unit, 4-81
Color Format unit, 2-24, 4-2, 4-63, 4-77, 4-81, 5-7,

6-11, G-13, G-30, 8-5
Color Formats, 3-9, 4-81

color formatting, 4-62, 4-64
Color Index, 1-2, 3-8, 4-54, 4-68, 4-81, G-13, G-15

color index, 3-18

Color Interpolation, 4-6
color interpolation, 3-10, 3-11, 4-5, 4-7, 4-69, 4-70

color order, 3-9, 4-55, G-4, G-31, G-32, G-127,
G-128

ColorDDAMode, 4-70, 4-71, 4-80, 5-10, G-14, G-15,
8-4, 8-6, 8-11

ColorOrder, 2-24

Command, 8-1
Command Register, 1-3, 2-3, 2-4, 2-22, 3-14, 4-9,

4-13, 4-15, 4-16, 4-24, 4-26, 4-27, 4-28, 4-34,
4-35, 4-62, 4-64, 4-77, 4-78, 4-90, 4-91, 6-4,
G-135

Command Registers, 2-3, 2-4

Common Blend Mode, 4-76
ConstantColor, 4-69, 4-70, 6-7, G-15, 8-4, 8-6, 8-11

contacting Texas Instruments, xiii
context, 1-4, 5-2, 6-5, A-2

context switch, 2-22, G-13

context switching, 2-22, 4-84, 6-5
Continue, 4-13, 4-15, 4-24, G-16, 8-2, 8-6, 8-10

Continue commands, 2-4, 2-22, 6-5
ContinueNewDom, 4-13, 4-24, 6-5, G-17, 8-2, 8-6,

8-10
ContinueNewLine, 2-4, 4-15, 4-21, 4-24, 4-30, 6-5,

G-18, G-94, 8-2, 8-6, 8-9

ContinueNewSub, 4-9, 4-12, 4-15, 4-24, G-19, 8-2,
8-6, 8-10

Control, 8-1
Control register, 1-3, 2-2, 2-4, 2-8, 4-70, 5-3, 6-4,

8-1, A-1
Control Registers, 2-3
Control registers, 2-3
Copies, 6-8
Copy, 4-20, 4-37, 4-38, 4-60, 4-62, 4-67
Count, 4-24, 4-26, G-16, G-17, G-18, G-19, G-20,

8-2, 8-6, 8-9
culling, 4-32, G-66, G-87, G-88, G-89, G-90, G-92,

G-109, G-116

D
dBdx, 4-6, 4-70, 4-71, 4-80, G-21, 8-4, 8-6, 8-11
dBdyDom, 4-6, 4-70, 4-71, G-22, 8-4, 8-6, 8-11
DDA, 4-13, 4-14, 4-15, 4-21, 4-24, 4-30, 4-44, 4-47,

4-49, 4-70, 4-71, 4-73, 4-74, 4-77, G-16, G-17,
G-18, G-19, G-94, G-95, G-123

decal, 4-72, G-123
delta, 4-5, 4-6, 4-7, 4-8, 4-9, 4-12, 4-13, 4-14, 4-15,

4-18, 4-24, 4-48, 4-49, 4-51, 4-52, 4-71, 4-74,
4-80, 6-4, G-16, G-121

Depth, 2-16, 3-3, 4-28, 4-37, 4-38, 4-39, 4-44, 4-47,
4-88, 4-89, 5-6, G-23, G-24, G-66, G-98, 8-3, 8-6,
8-12

depth, 4-17, 4-29, G-64, G-75, G-98
depth buffer, 2-16, 3-15, 4-42, 4-44, 4-45, 4-47, 4-63,

5-5, 6-6, 6-10, G-23, G-24, G-58, G-66, G-76
depth buffered, 4-4, 4-44, 4-48
depth buffering, 4-5, 4-41, 5-9, 5-10
Depth Example, 4-48
Depth gradients, 4-6
depth interpolation, 4-7
Depth test, 4-44
depth test, 3-4, 3-11, 4-2, 4-42, 4-43, 4-47, 4-48, 5-2,

6-6, G-113, G-136
Depth Testing, 4-7
depth testing, 4-84
depth writemask, 4-47, 4-48
Depth(Z) buffer, 4-2, 4-89
depth–cueing, 4-73
DepthMode, 4-44, 4-46, 4-48, 5-10, 7-1, G-24, 8-3,

8-6, 8-12

Index

Index-3

device drivers, 2-4

device ID, 5-3

device revision, 5-3

dFdx, 4-74, 4-79, 4-80, G-26, 8-4, 8-6, 8-11

dFdyDom, 4-74, 4-79, 4-80, G-27, 8-4, 8-6, 8-11

dGdx, 4-6, 4-70, 4-71, 4-80, G-28, 8-4, 8-6, 8-11

dGdyDom, 4-6, 4-70, 4-71, 4-80, G-29, 8-4, 8-6, 8-11

Dither Example, 4-82

Dithering, 4-2, 4-81, 4-82

dithering, 3-7, 3-10, 4-81, 4-82, 4-84, 5-7, G-31,
G-64

DitherMode, 2-24, 3-8, 3-17, 4-56, 4-81, 4-82, 4-83,
4-86, 5-7, G-30, G-53, G-54, 8-5, 8-6, 8-11

dKddx, 4-78, G-33, 8-5, 8-6, 8-11

dKddyDom, 4-78, G-34, 8-5, 8-6, 8-11

dKsdx, 4-78, G-35, 8-5, 8-6, 8-11

dKsdyDom, 4-78, G-36, 8-5, 8-6, 8-11

DMA, 2-6, 2-8, 2-9, 2-10, 2-11, 2-15, 2-17, 2-19,
2-22, 6-2, 6-3, 8-1, A-3

DMA buffer, 2-9, 2-10, 2-11, 2-12, 2-13, 2-14, 2-15,
4-25, 6-3

DMA Buffer Address, 2-14

DMA buffers, 2-17, 6-3

DMA controller, 2-6, 2-9, 2-13, 2-14, 2-19

DMA Example, 2-13

DMA Interface, 2-8

DMA interrupts, 2-14, 2-15, 6-3

DMA Tag Format, 2-10

DMAAddress, 2-8, 2-9, 2-13

DMACount, 2-8, 2-9, 2-10, 2-13, 2-14, 2-15, 2-19,
A-3

Dominant, G-22, G-27, G-29, G-34, G-36, G-38,
G-40, G-42, G-44, G-45, G-50, G-51

Dominant edge, 4-5, G-17, G-106

dominant edge, 4-5, 4-6, 4-8, 4-12, 4-24, 4-26, 4-44,
4-45, 4-47, 4-49, 4-51, 4-68, 4-69, 4-70, 4-74,
4-80, 6-4, G-17, G-19, G-22, G-27, G-29, G-34,
G-36, G-40, G-45, G-50, G-51, G-106, A-2

double buffered, 2-9, 3-5, 3-12, 3-15

Double Buffering, 3-12

double buffering, 2-19, 3-7, 3-13, 4-64, 6-10, G-4,
G-31, G-127, G-128

Double Buffering – fast, 6-10

Download, 4-20, 6-8

download, 2-6, 2-8, 2-9, 2-11, 3-2, 4-19, 4-21, 4-37,
4-38, 4-53, 4-56, 4-60, 4-62, 4-63, 4-68, 4-77,
6-2, 6-3, 6-8, 6-9, G-13, G-54, G-61, G-75, G-117,
8-1

Downloads, 6-8
dQdx, 4-51, 4-52, 4-57, G-37, 8-3, 8-6, 8-10
dQdyDom, 4-51, 4-52, 4-57, G-38, 8-3, 8-6, 8-10
dRdx, 4-6, 4-70, 4-71, 4-80, G-39, 8-4, 8-6, 8-11
dRdyDom, 4-6, 4-70, 4-71, 4-80, G-40, 8-4, 8-6, 8-11
Drivers, 2-21
dSdx, 4-49, 4-51, 4-52, 4-57, G-41, 8-3, 8-7, 8-10
dSdyDom, 4-49, 4-51, 4-52, 4-57, G-42, 8-3, 8-7,

8-10
dTdx, 4-51, 4-52, 4-57, G-43, 8-3, 8-7, 8-10
dTdyDom, 4-51, 4-52, 4-57, G-44, 8-3, 8-7, 8-10
dX, 4-14
dXDom, 2-7, 4-16, 4-26, G-45, 8-2, 8-7, 8-9
dXSub, 2-7, 4-10, 4-16, 4-26, G-46, 8-2, 8-7, 8-9
dY, 2-7, 2-8, 4-14, 4-16, 4-20, 4-26, 6-4, G-47, 8-2,

8-7, 8-9
dZdxL, 4-7, 4-45, 4-47, 4-48, G-48, G-49, 8-3, 8-7,

8-12
dZdxU, 4-7, 4-47, 4-48, G-48, G-49, 8-3, 8-7, 8-12
dZdyDomL, 4-7, 4-45, 4-47, 4-48, G-50, G-51, 8-3,

8-7, 8-12
dZdyDomU, 4-7, 4-47, 4-48, G-50, G-51, 8-3, 8-7,

8-12

E
endian, 2-23
Error, 2-18
Extent Checking, 4-90
extent checking, 3-10, 4-88, 4-89, 6-6, G-67
extent collection, G-88, G-90, G-109
extent regions, 4-92

F
fast fill, 4-62
FBBlockColor, 3-10, 4-62, G-52, 8-4, 8-7, 8-12
FBColor, 4-61, 4-62, 4-66, 4-89, G-53, G-58, 8-4,

8-7, 8-12
FBData, 4-28, 4-63, 4-77, 5-5, 6-8, G-54, G-98, 8-4,

8-7, 8-12

Index

Index-4

FBHardwareWriteMask, 3-10, 4-64, 4-66, 5-8, G-55,
8-4, 8-7, 8-12

FBPixelOffset, 3-5, 3-6, 3-13, 3-14, 4-61, 4-65, 5-5,
5-6, G-56, 8-4, 8-7, 8-12

FBReadMode, 3-5, 3-6, 3-10, 4-56, 4-60, 4-61, 4-63,
4-65, 4-85, 4-86, 5-3, 5-5, 5-7, 5-9, 6-8, G-57,
G-60, G-91, 8-4, 8-7, 8-12, B-1

FBReadPixel, 4-65, 5-9, G-59, 8-4, 8-7, 8-12

FBSoftwareWriteMask, 3-10, 4-64, 4-85, 4-87, 5-8,
G-55, G-60, 8-5, 8-7, 8-11

FBSourceData, 4-28, 4-63, G-61, G-98, 8-4, 8-7,
8-12

FBSourceOffset, 3-5, 3-6, 4-61, 4-65, 5-6, G-62, 8-4,
8-7, 8-12

FBWindowBase, 3-5, 3-6, 4-61, 4-65, 5-4, 5-8, G-63,
8-4, 8-7, 8-12

FBWriteData, 4-84, 6-6, G-64, G-85, 8-5, 8-7, 8-11

FBWriteMode, 4-56, 4-65, 4-77, 5-9, G-65, 8-4, 8-7,
8-12

FIFO, 2-3

FIFO Control, 2-6

FIFO overflow, 2-6

Filter Mode Example, 4-92

FilterMode, 2-16, 2-19, 4-88, 4-90, 4-91, 4-92, 4-93,
5-6, G-66, G-87, G-89, G-92, G-116, G-132,
G-133, 8-5, 8-7, 8-12

flat shaded, 4-70, G-64, G-85

Flat shading, 4-69

flat shading, 4-2, 4-84, G-15

Flat shading – high speed, 4-84

Flat Shading example, 4-70

fog, 4-17, 4-27, 4-29, 4-72, 4-76, 4-79, G-26, G-27,
G-64, G-69, G-70, G-71, G-98

Fog , 4-2

Fog Application, 4-73

Fog DDA, 4-74

fog DDA, 4-75, 4-79

Fog Example, 4-80

fog interpolation, 4-74

FogColor, 4-79, 4-80, G-69, G-71, 8-4, 8-7, 8-11

fogging, 4-28, 4-78, G-70, G-98

FogMode, 4-27, 4-73, 4-78, 4-80, 5-10, G-70, 8-4,
8-7, 8-11

fonts, 4-19

ForceAlpha, 4-81

ForceBackgroundColor, 4-22, 4-30, 4-33, G-95,
G-117

fragment, 4-2, 4-3, 4-6, 4-9, 4-11, 4-17

Frame Blank Synchronization, 4-64

Framebuffer, 3-5, 5-4

framebuffer, 1-3, 2-19, 3-1, 3-2, 3-14, 4-3, 4-21,
4-53, 4-60, 4-62, 4-90

framebuffer base address, 5-8, G-63

framebuffer clears, 6-6

Framebuffer Color Formats, 3-7

Framebuffer coordinates, 3-5

framebuffer depth, 5-3

framebuffer format, 3-18, 4-63, 4-72, 4-77, 4-81,
G-15, G-53, G-64

Framebuffer Read, 4-86

Framebuffer Read unit, 4-2, 4-60, 5-8, 6-8

Framebuffer Read/Write units, 4-60, G-52, G-53,
G-54, G-55, G-56, G-57, G-59, G-61, G-62, G-63,
G-65, G-91, G-115, G-125, G-129, 8-4

framebuffer reads, 3-10, 4-15, 4-22, 4-60, 4-62,
4-64, 4-77, 6-9, G-60

framebuffer units, 4-58

Framebuffer Write, 6-9

Framebuffer Write unit, 3-17, 4-2, 4-16, 4-53, 4-62,
4-88, 6-7, 6-8, 6-9

framebuffer writes, 4-22, 4-60, 4-64, 4-65, 4-67,
4-77, 6-9, G-115, G-135

front and back modes, 3-7

front buffer, 2-21, 3-5

FStart, 4-74, 4-79, 4-80, G-71, 8-4, 8-7, 8-11

Full Screen Double Buffering, 3-12

G
glyph, 4-19

Gouraud shading, 4-2, 4-4, 4-5, 4-8, 4-68, 4-69,
4-70, 4-71

Gouraud Shading examples, 4-71

GP FIFO Inteface, 2-16

GP FIFO Interface, 2-15

Graphics HyperPipeline, 4-2

GStart, 4-6, 4-70, 4-71, 4-80, G-72, 8-4, 8-7, 8-11

Index

Index-5

H
hardware writemask, 3-15, 4-16, 4-62, 6-4, G-55,

G-60
hardware writemasking, 3-10, 4-85
Hardware Writemasks, 3-10, 4-64
hardware writemasks, 4-64, G-64
HgEnd, 3-16
highlight, 4-73, 4-77, G-123
Hold Format, 2-11
host, 2-21
Host Interface, 1-3
Host Memory Bypass, 2-21
Host Out FIFO, 2-20, 4-21, 4-25, 5-6, G-53, G-76,

G-81, G-87, G-89, G-92, G-116, 8-1
Host Out Filtering, 4-88
Host Out Unit, 5-6
Host Out unit, 4-2, 4-21, 4-23, 4-88, 5-6, 6-4, 6-6,

G-66, G-87, G-88, G-89, G-90, G-92, G-99,
G-109, G-116, 8-5

I
I/O Interface, 2-6
Image Formatting, 4-77
Increment Format, 2-11
Indexed Format, 2-12
InFIFOSpace, 2-6, 2-7, 2-8, 2-17, 6-3
Initializing PERMEDIA, 5-2
input FIFO, 2-7, 2-8, 2-15, 3-13
IntEnable, 2-15
Internal Registers, 2-4
Internal Video Timing, 5-3
interpolation, 3-7, 4-11, 4-16
Interrupts, 2-18
IntFlags, 2-15
invert bitmask, 4-19, 4-21, 4-30
invert bitmasks, G-94
invert stencil, 4-43, G-113
invert stipple, 4-33, 4-36, G-6

K
KdStart, 4-78, G-73, 8-5, 8-7, 8-11

KsStart, 4-78, G-74, 8-4, 8-7, 8-11

L
LBData, 6-8, G-24, G-75, G-114, 8-2, 8-7, 8-12
LBDepth, 4-38, G-76, 8-2, 8-7, 8-12
LBReadFormat, 3-3, 4-39, 4-40, 5-5, G-77, 8-2, 8-8,

8-11
LBReadMode, 3-3, 4-37, 4-38, 4-39, 4-41, 5-3, 5-4,

5-5, 5-7, 5-9, G-78, 8-2, 8-8, 8-11, B-1
LBSourceOffset, 3-3, 4-37, 4-38, 4-40, 4-43, 5-6,

G-80, 8-2, 8-8, 8-11
LBStencil, 4-38, G-81, 8-2, 8-8, 8-12
LBWindowBase, 3-3, 4-37, 4-38, 4-40, 5-4, 5-5, 5-8,

G-82, 8-2, 8-8, 8-12
LBWriteFormat, 3-3, 4-39, 4-40, 5-5, G-83, 8-3, 8-8,

8-12
LBWriteMode, 4-38, 4-40, 4-41, 5-5, 5-9, G-84,

G-136, 8-2, 8-8, 8-12
left and right buffers, 3-5
LineCount, 3-15
Lines, 4-14, 4-16
little–endian, 2-23
Localbuffer, 3-2, 3-3, 5-4
localbuffer, 1-3, 3-1, 3-2, 4-21, 4-37, 4-38, 4-45,

4-90, 5-9, 6-12
localbuffer clears, 6-6
Localbuffer Coordinates, 3-3
Localbuffer example, 4-40
Localbuffer Read, 4-37, 4-39, 4-40, 4-41, 6-9
Localbuffer Read unit, 4-2, 5-5, 5-8, 6-4
Localbuffer Read/Write units, 4-37, G-75, G-76,

G-77, G-78, G-80, G-81, G-82, G-83, G-84
Localbuffer Reads, 4-22
Localbuffer Write, 4-22, 4-40, 4-41, 6-4, 6-9, G-136
Localbuffer Write unit, 4-2
Logic Op unit, 4-2, 6-6, G-60, G-64, G-85
logical op, 4-19
Logical Op Unit, 4-84
Logical Operations, 4-2
logical ops, 2-4, 3-7, 3-10, 3-11, 4-2, 4-15, 4-60,

4-62, 4-64, 4-84, 4-85, 5-10, G-85
Logical Ops unit, 8-5
LogicalOpMode, 4-84, 4-86, 4-87, 5-10, G-64, G-85,

8-5, 8-8, 8-11

Index

Index-6

LUT, 3-7, 3-12, 4-54, 4-56, 6-10

M
Major Group, 2-12
MaxHitRegion, 4-89, 4-90, 4-92, G-87, 8-5, 8-8, 8-13
MaxRegion, 4-89, 4-90, 4-92, G-88, 8-5, 8-8, 8-13
Memory Configuration, 5-3
Memory Organization, 6-12
Memory Subsystem, 1-3
MinHitRegion, 4-89, 4-90, 4-92, G-89, 8-5, 8-8, 8-13
MinRegion, 4-89, 4-90, 4-92, G-90, 8-5, 8-8, 8-13
mirror bitmask, 4-21, 4-30, G-94
mirror stipple pattern, G-6
Mixed, 8-1
modulate, 4-72, 4-73, 4-77, G-123
multi–buffer, 3-7
Multi–Buffering, 6-10

N
nearest neighbour, 4-54, G-132
not used, 7-1

O
Origin, 5-7
Output FIFO, 2-15
OutputFIFOWords, 2-16
Overlays, 6-11
overlays, 4-81

P
Packed Copies, 4-63
packed copies, 4-66, 6-7, G-91
packed data, 2-21
packed framebuffer, 3-16
packed mode, 4-62, 4-64, G-52, G-55
packed texture patching, G-58
PackedDataLimits, 4-63, 4-66, 6-7, 6-8, G-91, 8-2,

8-8, 8-10
page break, 3-2
Panning, 3-16

patch, 3-2, 4-39
patch mode, 3-2
patched addressing, 4-62, G-58, G-79
patched textures, 3-17
patches, 6-9
Patching, 4-62
patching, 4-63, 4-64, G-58
PCI, 2-2, 2-23, 4-91, 5-3, 6-2
PCI burst transfers, 6-2
PCI bus bandwidth, 6-2
PCI bus mastership, 6-3
PCI Disconnect, 2-6, 6-2, 6-3
performance, 3-2
Picking Example, 4-92
PickResult, 4-89, 4-90, 4-92, 4-93, G-92, 8-5, 8-8,

8-13
Pixel Size – setting, 5-9
Points, 4-15, G-97
preMult, 4-77, 4-79, G-3
primitives, 4-2
procedural texture, 4-78
procedural textures, G-117
Programmed I/O, 6-2

Q
QStart, 4-51, 4-52, 4-57, G-93, 8-3, 8-8, 8-10

R
Ramp blend mode, 4-76, 4-77, G-5
Ramp Texture Application, 4-72
ramp texture application, 4-72, 4-77, G-33, G-34,

G-35, G-36, G-73, G-74, G-123
rasterization, 4-9, 4-24
Rasterizer, 2-16, 3-17, 4-13, 4-16, 4-17, 4-18, 4-19,

4-20, 4-21, 4-34, 4-63, 4-68, 4-77, 4-84, 6-6, 6-8,
6-9, G-17, G-117

Rasterizer unit, 4-2, 4-8, 4-11, 4-16, 4-24, 4-26, 4-77,
6-4, G-10, G-16, G-17, G-18, G-19, G-20, G-45,
G-46, G-47, G-94, G-97, G-106, G-107, G-108,
G-135, G-137, G-138, G-139, 8-2

RasterizerMode, 4-8, 4-17, 4-19, 4-21, 4-23, 4-24,
4-26, 4-30, G-10, G-18, G-94, G-117, 8-2, 8-8,
8-10

reading back registers, 2-22

Index

Index-7

Red and Blue Swapping, 2-24

Register file, 2-2, 2-3

Register load order, 6-4

Register Read back, 2-22

Register Types, 2-3

Register updates – avoiding, 6-4

registers, 2-3

Render, 2-4, 2-11, 3-10, 4-9, 4-12, 4-15, 4-16, 4-22,
4-24, 4-27, 4-34, 4-35, 4-36, 4-51, 4-62, 4-69,
4-72, 4-73, 4-77, 4-78, 6-4, 6-5, G-6, G-8, G-10,
G-20, G-52, G-70, G-97, G-120, G-123, 8-2, 8-8,
8-9, C-2

reserved, 7-1

reset, 4-85, 5-2

reset value, 7-1

ResetPickResult, 2-4, 4-89, 4-90, 4-92, G-99, 8-5,
8-8, 8-13

reuse bitmask, 4-29, G-98

RGB, 3-8

RGB Texture Application, 4-72

RStart, 4-6, 4-70, 4-71, 4-80, G-100, 8-4, 8-8, 8-11

S
Scissor, 4-2

scissor, 4-19

scissor clip, 2-3, 2-4, 3-11, 4-19, 4-23

Scissor example, 4-35

scissor rectangle, 4-2

scissor test, 3-10, 4-32, 4-34, 4-44, 4-84, 4-90,
G-103, G-137

scissor tests, 4-42

Scissor/Stipple tests, 4-2

Scissor/Stipple unit, 4-3, 4-23, 4-32, 5-8, 6-4, G-6,
G-8, G-97, G-101, G-102, G-103, G-104, G-137,
8-2

ScissorMaxXY, 4-34, 4-35, G-101, 8-2, 8-8, 8-10

ScissorMinXY, 4-34, 4-35, G-102, 8-2, 8-8, 8-10

ScissorMode, 4-34, 4-35, 5-4, G-103, 8-2, 8-8, 8-10

Screen Clipping Region, 5-4

screen scissor, 4-21

screen scissor clip, 5-4

Screen Scissor Tests, 4-32

Screen Width, 5-3

ScreenBase, 3-14, 3-16
ScreenSize, 4-32, 4-34, 4-35, 5-4, G-104, 8-2, 8-8,

8-10
ScreenStride, 3-16
software writemask, 4-60, 4-62
software writemask example, 4-86
Software writemasking, 3-10
software writemasking, 4-60, 4-64, 4-84, 5-8, 5-9,

G-55, G-60, G-64
Software Writemasks, 4-85
Specialized Modes – disabling, 5-6
SStart, 4-49, 4-51, 4-52, 4-57, G-105, 8-3, 8-8, 8-10
StartX, 4-14
StartXDom, 2-4, 4-8, 4-20, 4-26, 4-30, G-95, G-106,

8-2, 8-8, 8-9
StartXSub, 4-8, 4-10, 4-20, 4-26, 4-30, G-95, G-107,

8-2, 8-8, 8-9
StartY, 2-4, 4-11, 4-14, 4-20, 4-26, 4-30, G-95,

G-108, 8-2, 8-8, 8-9
Statistic Operations, 4-89
StatisticMode, 4-89, 4-90, 4-91, 5-10, G-88, G-90,

G-109, 8-5, 8-8, 8-12
Stencil, 2-16, 3-3, 4-28, 4-37, 4-38, 4-39, 4-43, 4-46,

4-47, 4-88, G-98, G-111, G-114, 8-3, 8-8, 8-12
stencil, 1-3, 4-21, 4-40, 4-41, 4-47, 4-84, 5-5, 6-8,

G-64, G-75, G-81, G-111, G-112, G-114
stencil buffer, 2-16, 4-89, 5-5, 6-4, G-66, G-111,

G-113
Stencil Example, 4-47
Stencil Test, 4-42
stencil test, 4-2
stencil testing, 3-10, 4-37, 4-42, 4-46, 5-9, G-112,

G-113, G-136
stencil writemask, 4-46, G-112
Stencil/Depth, 4-2
Stencil/Depth unit, 4-2, 4-42, G-23, G-24, G-48,

G-49, G-50, G-51, G-111, G-112, G-113, G-136,
G-142, G-143, 8-3

StencilData, 4-43, 4-46, 4-48, G-112, G-113, 8-3,
8-8, 8-12

StencilMode, 4-42, 4-43, 4-46, 4-48, 5-10, G-113,
8-3, 8-8, 8-12

Stipple, 4-2, 4-28
stipple pattern, 4-2, 4-18, 4-36
stipple test, 4-3, 4-21, 4-32, 4-42, 4-44, 4-78, 6-6,

G-6, G-7, G-8

Index

Index-8

Sub Pixel Precision, 4-16
Subordinate edge, 4-5
subordinate edge, 4-8, 4-12, 4-24, 4-26, 4-44, 4-49,

4-68, 4-74, G-17, G-19, G-46, G-107, A-1, A-2
subordinate side, 4-6
subpatch, G-58
subpatch addressing, G-130
subpatch data, 3-2
subpatch mode, 3-2, 4-55, 4-56, 4-57, 4-63, G-130
subpatch pack mode, 4-63, G-58
subpatch packed data, 3-2
subpixel correction, 4-8, 4-9, 4-13, 4-16, 4-27, 4-29,

4-50, 4-69, G-98
SuspendUntilFrameBlank, 2-19, 3-14, 3-15, 4-64,

6-10, G-115, 8-5, 8-8, 8-13
SVGA, 1-4, 2-2, 5-3
Sync, 1-4, 2-4, 2-16, 2-18, 2-19, 2-22, 4-15, 4-23,

4-25, 4-88, 4-90, 4-92, 4-93, 5-6, 6-5, 6-8, 6-9,
G-67, G-116, 8-5, 8-8, 8-13

Sync interrupt, 2-20
Sync Interrupt Example, 4-93
Synchronization, 2-16, 2-19, 3-13, 4-22, 4-88, 4-90
System Initialization, 5-3

T
tag, 2-3, 2-6, 2-8, 2-12, 4-88, 7-1
Task Switching , 1-4
temporal ordering, 2-21
Texel0, 4-17, 4-22, 4-28, 4-30, 4-33, 4-58, 4-78, G-7,

G-12, G-95, G-98, G-117, 8-3, 8-9, 8-10
TexelLUT[0..15], 4-56, G-118, 8-3, 8-9, 8-13
TexelLUTMode, 4-56, 5-10, G-119, 8-3, 8-9, 8-10
texture, 3-2, 4-17, 4-20, 4-53, 4-54, 4-58, 4-72, 4-76,

6-8, 6-12, G-64, G-98, G-125
texture address, 4-57, G-120
Texture Address unit, 3-17, 4-2, 4-49, 4-53, G-37,

G-38, G-41, G-42, G-43, G-44, G-93, G-105,
G-120, G-134, 8-3

texture allocation, 5-5
texture application, 4-72, G-123
Texture Application Example, 4-79
Texture Buffer, 3-17
texture buffer, 1-3, 3-1, 3-8, G-58
Texture Buffer Coordinates, 3-17

Texture Color Formats, 3-18
texture coordinates, 4-49
Texture Download, 4-63
texture download, 4-23, 4-25, 4-58, 4-63, 6-8, 6-9,

G-129, G-135
texture download example, 4-56
Texture Filtering, 4-54
texture format, 3-17, 4-55, G-127, G-128
Texture Formatting, 4-54
Texture Interpolation, 4-49
texture interpolation, 4-51
Texture Interpolation Example, 4-51
Texture Loading, 6-8
texture map, 4-53, 4-55, G-119, G-130
texture mapped, 2-7
texture mapped trapezoid, 4-79
Texture Mapping, 4-2
texture mapping, 4-28, 4-51, 4-54, 4-58, 4-63, 6-13,

G-134, C-6
texture mapping example, 4-57
texture maps, 4-53
texture read, G-132
Texture Read unit, 2-24, 3-6, 3-17, 4-2, 4-17, 4-23,

4-50, 4-53, 4-78, 6-8, G-118, G-119, G-122,
G-126, G-130, G-132, 8-3

Texture/Fog/Blend unit, 2-24, 4-2, 4-20, 4-57, 4-58,
4-63, 4-72, 4-79, G-3, G-26, G-27, G-33, G-34,
G-35, G-36, G-69, G-70, G-71, G-73, G-74,
G-117, G-123, 8-4

TextureAddress, 4-3
TextureAddressMode, 4-51, 4-57, 5-10, G-120, 8-3,

8-9, 8-10
TextureBaseAddress, 3-17, 4-53, 5-5, G-122, 8-3,

8-9, 8-10
TextureColorMode, 4-72, 4-77, 4-79, 5-10, G-123,

8-4, 8-9, 8-11
TextureData, 3-17, 4-63, 6-9, G-125, G-129, 8-4,

8-9, 8-12
TextureDataFormat, 2-24, 3-8, 4-54, 4-55, 4-56,

4-57, G-126, 8-3, 8-9, 8-10
TextureDownloadOffset, 3-17, 4-63, 6-9, G-125,

G-129, 8-4, 8-9, 8-12
TextureMapFormat, 4-53, 4-55, 4-57, 5-3, 5-4, 5-8,

G-130, 8-3, 8-9, 8-10, B-1
TextureReadMode, 3-17, 4-53, 4-54, 4-55, 4-57,

5-10, G-132, 8-3, 8-9, 8-10

Index

Index-9

textures, 3-8, 3-17, 4-55
Trapezoid Fills, 6-6
Trapezoids, 4-11
Triple Buffering, 6-10
TStart, 4-51, 4-52, 4-57, G-134, 8-3, 8-9, 8-10

U
Unused units – disabling, 6-4
Upload, 4-20
upload, 2-16, 4-21, 4-34, 4-37, 4-38, 4-60, 4-61,

4-62, 4-64, 4-66, 4-68, 4-77, G-53, G-58, G-65,
G-66, G-76, G-81

uploading, 4-88
UseConstantFBWriteData, 4-84
user scissor, 4-19, 4-21
User Scissor Test, 4-32

V
VBLANK, 3-14, 6-10
Vertical Retrace, 2-18
VGA, 1-4
VGAControlReg, 5-3
Video Output, 3-13
Video Timing, 5-3
VTG, 5-3

W
WaitForCompletion, 4-23, 4-25, 4-38, 4-62, 6-8, 6-9,

G-57, G-78, G-135, 8-2, 8-9, 8-10
Window, 4-45, 4-46, 4-47, 5-6, 5-8, 6-4, G-136, 8-3,

8-9, 8-12

Window Address and Origin, 5-7
Window Initialization, 5-7
WindowOrigin, 4-32, 4-34, G-137, 8-2, 8-9, 8-10
writemask, 3-7
writemasking, 3-7, 3-10
Writemasks, 5-8
writemasks, 4-81
Writing – enabling, 5-8

X
X and Y limits, 4-23
XLimits, 4-23, 4-26, G-138, 8-2, 8-9, 8-10
XOR example, 4-86

Y
YCbCr, 4-58
YLimits, 4-23, 4-26, G-139, 8-2, 8-9, 8-10
YUV, 3-18, G-117
YUV color format, 4-54, 4-58, 4-78, G-12
YUV formats, 3-8
YUV textures, 3-8
YUV to RGB conversion, G-140
YUV unit, 4-2, 4-58, G-12, G-140, 8-3
YUVMode, 4-58, 4-59, 5-10, 6-13, G-12, G-140, 8-3,

8-9, 8-13

Z
ZStartL, 4-7, 4-45, 4-47, 4-48, G-142, G-143, 8-3,

8-9, 8-12
ZStartU, 4-7, 4-47, 4-48, G-142, G-143, 8-3, 8-9,

8-12

