

P10
Reference Guide Volume I -
Overview

DR A F T

P R OP R IE T AR Y AN D C ON F IDE N T IAL
IN F OR MAT ION

®

3D labs®

P 10
Reference Guide Volume I -
Overview

P R OP R IE T AR Y AN D C ON F IDE N T IAL
IN F OR MAT ION

®

Is s ue 1

ii Proprietary and Confidential 3D labs

Proprietary Notice
The material in this document is the intellectual property of 3D labs®. It is provided solely
for information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3D labs accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice. 3D labs may not
produce printed versions of each issue of this document. The latest version will be
available from the 3D labs web site.

3D labs products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.
3D labs ® is the worldwide trading name of 3D labs Inc. Ltd.

3D labs, GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or
registered trademarks of 3D labs Ltd., 3D labs Inc. Ltd or 3D labs Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of
Microsoft Corp. in the United States and/or other countries. OpenGL is a registered
trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and
recognized.

© Copyright 3 D labs Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com

Web: http://www.3dlabs.com

3 D labs Ltd.
Meadlake Place

Thorpe Lea Road, Egham
Surrey, TW20 8HE

United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3 D labs K.K.
Shiroyama JT Mori Bldg 16F

40301 Toranomon
Minato-ku, Tokyo, 105, Japan

Tel: +81-3-5403-4653
Fax: +91-3-5403-4646

3 D labs Inc.
480 Potrero Avenue

Sunnyvale, CA 94086,
United States

Tel: +1 (408) 530-4700
Fax: +1 (408) 530-4701

iv Proprietary and Confidential 3D labs

Change History

Document Issue Date Change

174.2.1 01 1 08/06/2001 Creation

User Note
This manual uses hyperlinks in MSWord file distributions to improve ease of access to relevant
information for online users. To enable hyperlinks, the complete Reference Guide and
Programmer’s Guide file set should be in a single Windows directory or folder.

Table of Contents
1 INTRODUCTION ... 1-2

1.1 Design Performance ... 1-2
1.2 Changes from Earlier Chips .. 1-3
1.2.1 Tile-based working ... 1-4
1.2.2 Multitasking .. 1-4
1.2.3 Command Input .. 1-4
1.2.4 Scalability ... 1-5
1.2.5 Legacy Support .. 1-5

1.3 Block Diagrams ... 1-6
1.3.1 Isochronous Command Stream and Context Switching 1-9

2 GRAPHICS PIPELINE ORGANIZATION .. 2-1
2.1 Transform and Lighting System ... 2-1
2.1.1 Current Parameter Unit ... 2-1
2.1.2 Vertex Shading Unit .. 2-2
2.1.3 Vertex Machine Unit.. 2-2
2.1.4 Cull Unit .. 2-2
2.1.5 Geometry Unit .. 2-2

2.2 Rasterizer Setup ... 2-3
2.2.1 Primitive Setup Subsystem ... 2-3

2.3 Rasterizer .. 2-3
2.3.1 Rasterization Process... 2-5
2.3.2 Antialiasing... 2-5

2.4 Texture.. 2-6
2.4.1 Texture Pipe Components .. 2-9

2.5 Framebuffer ... 2-11
2.6 Local Buffer ... 2-11
2.7 Memory Pipe ... 2-12
2.8 AGP/PCI Interface .. 2-12
2.8.1 PCI Interface... 2-12
2.8.2 AGPBus ... 2-13
2.8.3 SVGA ... 2-13

vi Proprietary and Confidential 3D labs

2.8.4 Video Overlay .. 2-15
2.9 DMA 2-15
2.9.1 Graphics Core to Graphics I/O – Upload Controller 2-15
2.9.2 Graphics I/O to Geometry and Rasterizer – GPIO Command DMA ... 2-15
2.9.3 Circular Buffers .. 2-16
2.9.4 Interrupt Controller ... 2-17
2.9.5 Video Streaming .. 2-17
2.9.6 ROM support .. 2-17

3 ADDRESS MAPS AND REGIONS .. 3-1
3.1 PCI Configuration Region .. 3-1
3.1.1 Control Registers ... 3-1
3.1.2 Memory Apertures ... 3-1
3.1.3 Expansion ROM ... 3-1
3.1.4 VGA Addresses .. 3-2

3.2 Region Zero Address Map .. 3-5
3.2.1 Reserved Registers ... 3-5
3.2.2 PCI Address Regions ... 3-6

4 VIDEO AND RAMDAC ... 4-1
4.1 LUTs 4-1
4.2 Display Resolutions .. 4-1
4.3 Display Data Channels .. 4-2
4.4 Analogue Display Timing Parameters ... 4-2
4.4.1 Synchronization ... 4-3
4.4.2 Multi-Head ... 4-3

4.5 Digital Display Timing Parameters .. 4-3
4.6 Multi-rasterizer and Genlock .. 4-4

1

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

1-2 Proprietary and Confidential 3D labs

1 Introduc tion

The P10 Graphics Processor is a scalable design using extensive parallelism and
programmability to render multiple primitives per clock cycle and support texture-
intensive APIs such as Microsoft DX8. Using programmable T&L and programmable
pixel shaders in conjunction with highly optimised fixed-function units results in a
simpler, faster and more flexible design.
Programmable registers also allow dynamic reconfiguration of the number of vertex
shaders, the number of texture pipes and the number of rasterizers.

1.1 Design Performance
Performance estimates are based on design simulation rates pending availability of
silicon-based test results. Primitive rates assume single tile coverage (reduced to 8x4 for
z), Single directional light, Gouraud shaded, Depth buffered and .13 micron
manufacturing. The feature set shown is in addition to features normally supported on
earlier devices.

P10 Performance Overview
3Dmark (DX8) B e nc h-

m a rk s ProCDRS-03 (Workstation) 133
Quake III Quincunx FSAA (OpenGL)
Points, lines 75M lines/Sec. P

rim
i-

tives

Triangles 75M lines/Sec.
AA Lines 75M lines/Sec.

Vertex rendering – no depth, texture or
lighting

150M vertices/sec. T
rans-

form
 &

Lighting

Vertex rendering – with depth, not texture
or lighting

132M vertices/sec.

Vertex rendering – texture and fog, no
lighting

106M vertices/sec.

Scissor (core:memory) 19.2: - G/sec. (64 primitives/
cycle)

P
ixel Fill
R

ates

32bpp Clear (core:memory) 4.8:4.25 G/sec.
GID rejected (core:memory) 19.2:17 G/sec.
Trilinear (core:memory, 32bpp, one
texel/pixel read)

1.2 : 1.1G/s

Peak Memory Bandwidth 17 GBytes/s Bas

 Miranda P10 Reference Guide Volume I Overview

3D labs Proprietary and Confidential 1-3

P10 Performance Overview
Max. memory 128Mbytes
Operating Frequency (0.13 micron/.18 micron) 300MHz/200

MHz
Up to 8 textures per primitive with any combination of
trilinear, 3D, anisotropic filtering, bump mapping or cube
mapping.

4

Programmable texture co-ordinate generation 4
Programmable shaders (i.e. texture combiners) 4
Programmable pixel unit 4
Accumulation buffering and convolution 4
Precomputed displacement maps and tesselation 4
T buffer full-scene antialiasing 4
Integrated geometry and lighting 4

Table 1.1 P10 Performance Overview

1.2 Changes from Earlier Chips

 Table 1.3 Lighting Performance

Because of the extent of P10’s paradigm shift a complete list of changes is pointless.
However the table below illustrates the areas where developers wil find the most
extensive innovation.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

1-4 Proprietary and Confidential 3D labs

Previous Rasterizer Chips (P4/R4, MX) P10

Scanline Framebuffer Tiled framebuffer
DDA based interpolators Plane equations
Edge-walking rasterization Tile-seeking rasterization
Multiple cycles per primitive Multiple primitives per cycle
Fixed function units Fixed/Programmable hybrid
FIFO-based memory Cache-based memory
Asynchronous pipeline Parallel pipes with pre-emption
Command and control data visits every unit Command and control independent routing

 Table 1.1 Evolutionary Changes

1.2.1 Tile-based working
P10 adopts the tile as its sole unit of internal work. All operations are performed on 8x8
square screen-aligned planar byte pixel tiles similar to the 64x1 pixel spans used in
earlier chips. All data types are stored the same way, so for example anything (e.g. the
Depth buffer) can be a texture, and it is possible to render to a texture. Each memory
access returns a planar byte tile. Two or more accesses are used for pixel depths greater
than 8 bits, which allows unusual formats such as 24, 40 and 48 bpp. All memory
accesses are virtual and page faults are handled with a CPU-like page swap.
This uniformity results in tile scalability and substantial performance improvements,
particularly in 3D and small 2D primitives (e.g. characters) where the improved scanline
coherence and memories efficiencies are most noticeable. Performance is further
enhanced by the use of 256-bit DDR memories running at 266MHz (peak bandwidth
17GB/s).

1.2.2 Multitasking
Architecture innovations include the Context unit, which implements pre-emptive
multitasking to support time-critical operations such as render during frame blank. The
Context unit caches context data and keeps a copy in local memory. A small cache
handles frequently updated values such as mode registers. When a context switch is
needed the cache is flushed, the new context record is read from memory and the data
converted into a message stream to update downstream units. Because only a small
amount of cache data needs to be saved this process can be very fast – typically ¼
scanline.

1.2.3 Command Input
Unlike earlier graphics processors, P10 command and control data (register updates,
mode changes etc.) does not generally take the same route as pixel data. This improves
flexibility and bandwidth between units.
P10 uses two independent Command Units - one servicing the GP stream (for 3D and
general 2D commands), the other servicing the Isochronous stream. Both command units

 Miranda P10 Reference Guide Volume I Overview

3D labs Proprietary and Confidential 1-5

manage the Circular Buffers and Input DMA. The GP Command unit also manages
Vertex Arrays.

1.2.3.1 Circular Buffers
Circular buffers, also new in P10, allow small packets of work to be transferred rapidly
without incurring the delays and overhead of setting up a DMA buffer and making an
escape call to the O/S. Because DMA transfers take time to initiate they are normally
optimized for large bursts of data to improve efficiency. This can result in the graphics
system being idle while some work has accumulated in the DMA buffer, but not enough to
trigger a burst.
Circular buffers are usually stored in local memory and mapped into the ICD. When
commands and data are added to the circular buffers, chip-resident write pointer registers
are updated accordingly (without any O/S intervention). When the current circular buffer
goes empty the hardware automatically searches the pool of 16 circular buffers for more
work and instigates a context switch if necessary.
Circular buffers process the command stream identically to input DMA and can even call
DMA buffers.

1.2.3.2 Vertex Arrays and Vertex Caching for Indexed Arrays
Vertex arrays are supported for compactness and flexibility in data layout. An array
element can hold up to 16 parameters, which can be stored consecutively in memory or
held in arrays. Vertex elements can be accessed in sequence or using array indices. The
most recent 16 array indices are cached to allow comparison with the current index to
check for vertex meshing, which in turn allows substantial savings in memory reads and
Shader processing.

1.2.4 Scalability
The design allows unusual flexibility in adapting performance to specific applications and
to market targets as well as future proofing:

• Tile size can be varied

• the number of texture pipes and vertex shaders is configurable

• Changing the number of pipes and shaders does not affect the API

• Memory devices can be picked to suit market conditions (although 256bit DDRs are
preferred).

• When a programmable register is idle it can be reprogrammed on the fly as an
additional rasterizer to further improve fill and small primitive rates.

1.2.5 Legacy Support
Because of the design paradigm shift it has not been possible to continue support for
many legacy items. This has incidentally removed up to 40% of the total code lines,
which translates into a substantial reduction in gate count and chip complexity and a
smaller, more flexible and faster design.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

1-6 Proprietary and Confidential 3D labs

1.3 Block Diagrams

Figure 1.1 Chip-level Block Diagram

GPIO T&L

R
asterizer
Setup

Texture Pipe 2
Texture Pipe 3

Local Buffer

Pixel
Unit A

G
P
/
P
C
I

B
u
s

Texture Pipe 0

Texture Pipe 1

Memory Subsystem

Host Out DMA Upload

V
ideo

DAC
TMDS
VGA

TVOut

Pre-emption
Channel

V
ideo

P
ort In

 Miranda P10 Reference Guide Volume I Overview

3D labs Proprietary and Confidential 1-7

Geometry
Unit

Rectangle
Rasteriser

Unit

Vertex
Shading

Unit

Vertex
Machine

Unit
Cull
Unit

Current
Parameter

Unit

Primitive
Set Up
Unit

Rasteriser
Unit

Context
Unit

Geom
Command
Stream

Isochronous
Command
Stream

Parameter DataT&L

Connection to
Memory Pipe Unit

Message stream
(128 bits + 10 bit tag

Scanline
Number

From VTG

To Router Unit

From Host
Out Unit

Figure 1.2 Transformation and Lighting Block Diagram

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

1-8 Proprietary and Confidential 3D labs

Figure 1.3 Rasterizer Block Diagram

 Miranda P10 Reference Guide Volume I Overview

3D labs Proprietary and Confidential 1-9

1.3.1 Isochronous Command Stream and Context Switching
Microsoft’s ‘hot button’ for GDI+ establishes a new requirement for real-time processing
slaved to the display state to support tasks such as rendering during frame blank or non-
tear bliting to a window.
P10 addresses this need by implementing a separate graphics core pre-emption channel
which uses fast on-board context-switching (including switching during a primitive).
As context switchable state flows through into the rasterizer it goes through a Context
Unit which snoops and caches the context data and keeps a local copy for context
switches.
A second command queue handles real-time rendering commands, i.e. those using Video
Timing Generator (VTG) and scanline timestamps. If the context switch is to allow
isochronous rendering it invokes a small, dedicated isochronous stream rasterizer. A
typical partial context switch to and from an isochronous context should take less than 700
cycles (3.5μs at 200MHz or ¼ scanline).
The Isochronous rasterizer only deals with rectangular primitives, which it can render in
either direction. It is not a parallel blit engine – it is invoked only for Isochronous service
requests using existing processor capacity.
For more information, see the Timestamp, Changeport and HoldPort commands in the
Miranda P10 Reference Guide volume III.

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-1

2
2 G ra phic s P ipe line Orga niza tion

This chapter describes the Miranda P10 graphics pipeline functional layout.

2.1 Transform and Lighting System
Transform and Lighting (T&L) functionality includes five functional groupings (‘Units’)
which handle vertex setup, transforms, lighting and culling.

2.1.1 Current Parameter Unit
The Current Parameter unit tracks the 16 possible vertex parameters (position, colour(s),
texture coordinates(s) and normal) for each vertex and forwards any missing ones to the
Vertex Shader Unit.
In the process, it substitutes any missing parameters the most recent version of that
parameter. This is particularly relevant for OpenGL where a parameter like colour can be
sent once and it is then applied to all subsequent vertices until re-sent. This is frequently
found where the Begin/End paradigm is in use.
Note: For vertex arrays or vertex buffers in D3D this functionality is not needed as

each parameter is supplied for every vertex.
To avoid passing all 16 parameters for each vertex to the Vertex Shader Unit, this unit
counts how many times each parameter has been sent and stops sending when each
recipient vertex store now holds it. For example if the Vertex Shader processes n vertices
in parallel and the vertex store is double-buffered then after each parameter has been
sent 2n times each vertex store should contain current values. This causes an initial flurry
of transfers during context switches but after 2n vertices the steady state condition prevail
and the minimum number of messages will be generated per vertex.
Note: The parameters are typeless – the names (VertexData0…VertexData15)

are simply placeholders. The program running in the Vertex Shader Unit
assigns meaning to the parameters, although conventional meanings are
used in our documentation. This allows the use of the Vertex Shader for
much more varied applications.

OpenGL can interrogate the current vertex values at any time. To avoid the performance
constraints of tracking this in software, the GetCurrent command dumps the current
values using the Upload128 command so that they appear in the Host Out FIFO. From
there they can be read or DMAed into memory.
All 16 parameters are written from this unit and the Vertex Machine Unit appends the
current edge flag information.
Colour Material support: OpenGL allows the Colour parameter to be used to edit one or
more material parameters on a per vertex basis. Updating the material values stored in
the Coefficient memory in the Vertex Shading Unit would be very bad for performance as
this would prevent the parallel vertex processing (it is done as a SIMD architecture where
the Coefficient memory is broadcast to all processing elements). Instead the program is

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-2Proprietary and Confidential
 3D labs

changed to expect the material parameter to come from the colour parameter in the vertex
store rather than the material value in the Coefficient memory. When the Colour Material
mode changes the real material parameter(s) must be updated from the current colour. As
outlined above the driver software is not tracking this parameter and you certainly don't
want to do a Get to find its value (getting state out of the hardware is

2.1.2 Vertex Shading Unit
This performs the bulk of the transformation, lighting and texture generation work. As
noted previously the unit is fully programmable. Programs can be up to 256 instructions
long, including subroutines and loops. Details of programmable registers and the Vertex
Shader instruction set are in “Programmable Registers”, Volume III of the P10 Reference
Guide.
The Vertex Shading Unit is implemented as a 16 element SIMD array, with each element
(VP) working on a separate vertex. The floating point ALU in each VP is a scalar
multiplier accumulator which also supports multi cycle vector instructions.

2.1.3 Vertex Machine Unit
Co-ordinate results from the Vertex Shader are passed to the Vertex Machine Unit via the
message stream. The 16 parameter results go directly to the Geometry Unit via a private
bus. (Two output ports allow for a higher vertex throughput.)
The Vertex Machine Unit monitors vertex coordinates (really window coordinates now) as
they pass through. When enough vertices for the given primitive type have passed
through, the unit issues a draw command for the appropriate primitive. Keeping the
orientation of triangles constant, which vertex is a provoking vertex, when to reset the line
stipple, etc. are all handled here. The Vertex Machine uses all 16 vertex cache entries
(even though for many of the primitives it is not possible to extract any more than the
inherent cache locality) as this greatly reduces the chance of stalling while loading a
scoreboarded parameter register.

2.1.4 Cull Unit (Primitive Assembly)
The Cull Unit caches the window coordinates for the 16 vertices. When cull and geometry
processing for a primitive starts it uses the cached window coordinates to test clip against
the viewing frustum and, for triangles, do a back-face test. Any primitives failing these
tests (if enabled) are discarded. Any primitives passing these tests are passed on. If the
clip test is inconclusive the primitive is further tested against the guard band limits. A
pass against these new limits means that it will be left to the rasterizer to clip the primitive
while it is being filled - it can do this very efficiency and spends very little time in 'out of
view' regions. A fail against the guard band limits or the near, far or user clip plane will
cause the primitive to be geometrically clipped in the Geometry Unit.

2.1.5 Geometry Unit
The Geometry Unit holds the full vertex cache for 16 vertices. Each entry holds 16
parameters and a window coordinate. As each primitive is processed the Geometry Unit
checks that the necessary vertex data is present. It tracks the progress of the destination
circular buffers and the state of the downstream setup units. If vertex data is missing it
supplies it. The Geometry Unit can accept vertex data faster than it can be passed on to

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-3

the rasterizer and it filters out vertex data for culled primitives. This allows for a faster cull
rate than rendering rate.

Note: Primitives which need to be geometrically clipped are clipped in this Unit. 1
The clip polygon is rendered as a series of triangles.

2.2 Rasterizer Setup
The Rasterizer’s Primitive Setup Subsystem decomposes geometric objects into
primitives and converts windows relative coordinates into absolute coordinates.

2.2.1 Primitive Setup Subsystem
This subsystem is made up from:

• Primitive SetUp Unit

• Depth SetUp Unit

• Parameter SetUp Unit(s)
Input to this subsystem is the coordinates, colours, texture coordinates, etc. per vertex
and these are stored in local vertex stores. The vertex stores are distributed so each
Setup Unit only holds the parameters it is concerned with.
Primitive Setup does any primitive specific processing. This includes calculating the area
of triangles, splitting stippled lines (aliased and antialiased) into individual line segments,
converting lines into quads for rasterization and converting points into screen aligned
squares for rasterization. Window relative coordinates are converted into fixed point
screen relative coordinates. Finally it calculates the projected x and y gradients from the
floating point coordinates (used when calculating the parameter gradients) for all
primitives.
Depth Setup and Parameter Setup are very similar with the differences being limited to
the parameter tag values, input clamping requirements and output format conversion.
The Depth Setup Unit has a 16-entry direct-mapped vertex store. The common part is a
plane equation evaluator which implements 3 equations - one for the gradient in x, one for
the gradient in y and one for the start value. These equations are common for all primitive
types and are applied once per parameter per primitive. The Setup units are adjacent to
their corresponding units which will evaluate the parameter value over the primitive.

2.3 Rasterizer
The Rasterizer subsystem consists of a Rasterizer Unit and a Rectangle Rasterizer Unit.
The Rectangle Rasterizer Unit only rasterizes rectangles and is located in the isochronous
stream – see the Isochronous Command Stream section for a discussion. .
The input to the Rasterizer Unit is in fixed point 2's complement 14.4 fixed point
coordinates. When a Draw* command is received the unit will then calculate the 3 or 4

1 This is done by calculating the barycentric coordinates for the vertices in the clip polygon using the Sutherland Hodgman
clipping algorithm.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-4Proprietary and Confidential
 3D labs

edge functions for the primitive type, identify which edges are inclusive edges (i.e. should
return inside if a sample point lies exactly on the edge2) and identify the start tile.
Once the edges of the primitive and a start tile is known the rasterizer seeks out tiles
which are inside the edges or intersect the edges. This seeking is further qualified by a
user defined visible rectangle (VisRect) to prevent the rasterizer visiting tiles outside of the
screen/window/viewport. Tiles which pass this stage will be either totally inside or partially
inside the primitive. Tiles which are partially inside are further tested to determine which
fragments in the tile are inside the primitive and a tile mask built up.
The output of the rasterizer is the Tile command which controls the rest of the core. Each
Tile holds the tile's coordinate and tile mask. The tiles are always screen relative and are
aligned to tile (8x8 pixel) boundaries. Before a Tile command is sent it is optionally
scissored and masked using the area stipple pattern. The rasterizer generates tiles in an
order that maximises memory bandwidth by staying within a single memory page as much
as possible. Memory is organised in 8x8 tiles3 and these are stored linearly in memory.
The rasterizer has an input coordinate range of ±8K, but after visible rectangle clipping
this is reduced to 0…8K. This can be communicated to the other units in 10 bit fields for x
and y by omitting the bottom 3 bits (which are always 0). Destination tiles are always
aligned as indicated above, but source tiles can have any alignment. The Pixel Address
Unit uses a local 2D offset to generate non aligned tiles, but converts these into 1, 2 or 4
aligned tile reads to memory, merges the results and passes them on to the Pixel Unit for
processing.
The triangle, antialiased triangles, lines, antialiased lines, points and 3D rectangles are all
rasterized with basically the same algorithm, however antialiased points and 2D
rectangles are treated as special cases.
The DrawRectangle2D primitive is limited to rasterizing screen aligned rectangles but can
rasterize tiles in any of four directions (left to right, right to left, top to bottom, bottom to
top) so overlapping blit regions can be implemented. The rasterization of the rectangle is
further qualified by an operation field so a rectangle can sync on host data (for image
download), or sync on bit masks (for monochrome expansion or glyph handling) in which
case the tiles are output in linear scanline order.
Each tile is visited multiple times, but with one row of fragments selected so that the host
can present data in scanline order without any regard to the tile structure of the
framebuffer. The packed host data is unpacked and aligned and sent to the Pixel Unit
before the Tile command.
The host bitmask is aligned to the tile and row position and then forwarded to the Pixel
Unit as a PixelMask before the Tile command, where it can be tested and used.
Alternatively the bitmask can be anded with the Tile mask. For image upload the tiles can
also be visited in scanline order.

2 This needs to vary depending on which is the top or right edge so that butting triangles don't write to a pixel twice.
3 The aim is to have memory appear as a linear layout and do any patching during the read or write operation, but if this proves
impossible without sacrificing performance then a single tiled layout will be used by everything and any changes needed for
internal operation (such as for texture caching) will be done on the fly. This will save having any units which read or write to
memory from having to understand 4 different layout formats as in earlier chips..

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-5

2.3.1 Rasterization Process
The Rasterizer Unit handles arbitrary quad and triangle rasterization, antialias subpixel
mask and coverage calculation, scissor operations and area stippling. The rasterization
process can be broken down into three parts:

• Calculate the bounding box of the primitive and test this against the VisRect. The
VisRect defines the only pixels which are allowed to be touched. In a dual P10
system each P10 is assigned alternating super tiles (64x64 pixels) in a checker board
pattern. If the bounding box of the primitive is contained in the other P10's super tile
the primitive is discarded at this stage.

• Visiting the tiles which are interior to, or on the edge of a primitive while spending no
time visiting tiles outside the primitive or in clipped out regions of the primitive which
fall outside of the VisRect. Extra sample points outside of the current tile being
processed are used as 'out riggers' to assist in this. One other area where care is
needed is on thin slivers of primitives which fall between sample points and give a
zero tile mask, thereby giving the impression the edge of a primitive has been found.

• Computing the tile mask to show which fragments in the tile are inside the primitive.
This also extends to calculating the coverage mask for antialiasing.

There are 4 edge function generators so that arbitrary quads can be supported, although
these will normally be screen aligned parallelograms or non screen aligned rectangles for
aliased lines or antialiased lines respectively. Screen aligned rectangles are used for 2D
and 3D points. Triangles only need to use 3 edge function generators.
The edge functions will test which side of an edge the 64 sample positions in a tile lay and
return an inside mask. ANDing together the 3 or 4 inside masks will give a tile mask with
the inside fragments of the primitive for this tile set. Sample points which lie exactly on an
edge need to be handled carefully so shared edges only touch a sample point once.

The sample points are normally positioned at the centre of the pixels4, but when
antialiasing up to 16 sample points are configured to lie within a pixel. The 16 subpixel
sample points are irregularly positioned (via a user programmable table) on a regular 8x8
grid within the pixel so that any edge moving across a pixel will cover (or uncover) the
sample points gradually and not 4 at a time. This emulates stochastic (or jittered)
sampling and gives better antialiasing results as, in general, more intensity levels are
used.

2.3.2 Antialiasing
Antialiasing is done by jittering the tile's position and generating a new tile mask. The
jittered tile masks are then accumulated to calculate a coverage value or coverage mask
for each fragment position. The number of times a tile is jittered can be varied to trade off
antialiasing quality against speed. Tiles which are totally inside the primitive are
automatically marked with 100% coverage so these are processed at non antialising
speeds. This information is also passed to the Pixel Unit so it can implement a faster
processing path for fully covered pixels.
The UserScissor rectangle will optionally modify the tile mask if the tile intersects the
scissor rectangle or delete a Tile message if it is outside of the scissor rectangle. This,
unlike the VisRect, does not influence which tiles are visited.

4 D3D expects the sample point to be at the origin of the pixel and this is allowed for when the appropriate mode bit is set.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-6Proprietary and Confidential
 3D labs

Finally the tile mask is optionally ANDed with the 8x8 area stipple mask extracted from the
stipple mask table. The stipple mask held in the table is always 32x32 and screen
aligned5.
The rasterizer computes the tile mask in a single cycle and this may seem excessively
fast (and hence expensive) when the remainder of the core is usually taking, say 4…8
cycles per tile. The reasons for this apparent mismatch are:

• To allow guard band clipping and scissoring to occur faster.

• Searching for interior tiles when the start tile is outside the primitive (maybe due to
guard band clipping) is wasted processing time and should be minimised.

• To allow for some inefficiencies in tracking the primitive boundary where empty tiles
outside the primitive are visited.

• The antialiasing hardware uses the same 64 point sampler to calculate the
subsamples values so could take up to 16 cycles to calculate each fragment's
coverage.

• It allows some simple operations to run much faster. Examples of this are clearing
a buffer, GID testing and early exit depth testing.

Antialised points are processed in a different way as it is not possible to use the edge
function generators without making them very expensive or converting the point to an
polygon. The method used it to calculate the distance from each subpixel sample point in
the point's bounding box to the point's centre and compare this to the point's radius.
Subpixel sample points with a distance greater than the radius do not contribute to a
pixel's coverage. The cost of this is kept low by only allowing small radius points hence
the distance calculation6 is a small multiply and by taking a cycle per subpixel sample per
pixel within the bounding box. This will limit the performance on this primitive, however
this is not a performance critical operation but does need to be supported as the software
has no way to substitute alternative rendering commands due to polymode behaviour.

2.4 Texture
The texture subsystem is the largest and most complicated subsystem and will be further
split up for this description.
The main components of the texture subsystem are:
• Texture Switch Unit
• One or more Texture Pipes
• Texture Arbiter Unit
• Texture Address Unit
• Texture Format Unit
• Secondary Texture Cache
• Texture Mux Unit

5 This is much simpler than in earlier chips where different size stipple masks could be held and these masks could be aligned to
window coordinates, screen coordinates and be mirrored and inverted. Now it is software's responsibility to replicate the mask
to 32x32 and to realign if the window moves (if necessary).
6 Really distance squared to avoid the square root.

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-7

The Texture Switch Unit provides the interface for all the texture unit (except the
Parameter Unit and the Shading Unit) to the message stream. It will decode tags and,
where necessary, cause the state in each the texture pipe to be updated.
A texture pipe does all the colour and texture processing necessary for a single tile so the
Texture Switch Unit distributes the Tile messages in round robin fashion to the active
texture pipes. Distributing the work in this fashion (as opposed to the alternative
described in the footnote) probably takes more gates7, but does have the following
advantages:
 It allows the design to be more scalable and not limited to a power of two number of

pipes.
 The performance is not quantised as much when the number of textures is not an

exact multiple or fraction of the number of pipes. For example 3 textures would leave
one pipe unused with the alternative scheme, whereas with this approach all pipes
are kept at maximum throughput.

 The number of texture pipes is transparent to the software and the Texture Switch
Unit can avoid using texture pipes with manufacturing defects. Obviously this will
reduce performance but it does allow a device which would have otherwise been
scrapped to be recovered and sold into a market where the drop in texture
performance is acceptable. This will improve the effective manufacturing yield.

 The Texture Switch Unit is much simpler than would have been true with texture
pipes working together with feedback from one pipe to the next.

 Small primitive performance is improved because each pipe only sets up and
processes the tiles (i.e. small primitives) given to it.

Each texture pipe works autonomously and computes the filtered texture values for the
valid fragments in the tile it has been given. It will do this for up to eight sets of textures
and pass the results to the Shader Unit in the pipe, and potentially back to the Texture
Coordinate Unit for bump mapping. Processing within the texture pipe is done as a
mixture of SIMD units (Texture Coordinate Unit and Shading Unit) or one fragment at a
time (Primary Texture Cache Unit and Texture Filter Unit) depending on how hard to
parallelise the required operations.
Each texture in a pipe can be trilinear filtered with per pixel LOD, cube mapped, bump
mapped, anisotropic filtered and access 1D, 2D, or 3D maps. The texture pipe will issue
read requests to the Texture Arbiter when cache misses occur. The texture pipe will be
expanded on later.
The Texture Arbiter collects texture read requests from the texture pipes, serialises them
and forwards them onto the Texture Address Unit. When the texture data is returned,
after any necessary formatting, this unit will then route it to the requesting pipe. Each pipe
has pair of ports in each direction so that requests from different mip map levels can be
grouped together8. The arbitration between the texture pipes is done on a round robin
basis.

7 The 64 plane equations (8 texture coordinates and 8 colours) are duplicated as is the Parameter Setup Unit.
8 This is probably not necessary now because all texture reads will come from a secondary level of cache so grouping requests
from the same map together is probably not necessary (to get good memory efficiency) and reducing the number of ports may
help layout etc..

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-8Proprietary and Confidential
 3D labs

The Texture Address Unit calculates the address in memory where the texel data resides.
This operation is shared by all texture pipes (to saves gates by not duplicating it), and in
any case it only needs to calculate addresses as fast as the memory/secondary cache can
service them. The texture map to read is identified by a 3 bit texture ID, its coordinate (i, j,
k), a map level and a cube face. This together with local registers allow a memory
address to be calculated. This unit only works in logical addresses and the translation to
physical addresses and handling any page faulting is done in the Memory Controller. The
layout of texture data in cube maps and mip map chains is now fully specified
algorithmically so just the base address needs to be provided. The maximum texture map
size is 8Kx8K and they do not have to be square or a power of two in size9.
Once the logical address has been calculated it is passed on to the Secondary Texture
Cache Unit. This unit will check if the texture tile is in the cache and if so will send the
data to the Texture Format Unit. If the texture tile is not present then it will issue a
request to the Memory Pipe Unit and when the data arrives update the cache and then
forward the data on. The cache lines hold a 256 byte block of data and this would
normally represent an 8x8 by 32bpp tile, but could be some other format (8 or 16 bpp,
YUV or compressed). The cache is 4 way set associative and holds 128 lines (i.e. for a
total cache size of 32Kbytes), although this may change once some simulations have
been done. Cache coherence with the memory is not maintained and it is up to the
programmer to invalidate the cache whenever textures in memory are edited. The
Secondary Texture Cache capitalises on the coherency between tiles or sub tiles when
more than one texture is being accessed.
The primary texture cache in the texture pipes always holds the texture data as 32bpp 4x4
tiles so when the Texture Format Unit receives the raw texture data from the Texture
Secondary Cache Unit it needs to convert it into this format before passing it on to the
Texture Arbiter Unit. As well as handling the normal 1, 2, 3 or 4 component textures held
as 8, 16 or 32 bits it also does any YUV 422 conversions (to YUV 444) and expands the
DX compressed texture formats. Indexed textures are not handled directly but are
converted to one of the texture formats when they are downloaded. Border colours are

9 Mip mapping requires a map size which is a power of two or has a border. Cube maps are always square and each face always
has the same size map (if present).

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-9

converted to a memory access as the border colour for a texture map is held in the
memory location after the texture map.
The Texture Mux Unit collects the fragment data for each tile from the various texture
pipes and the message stream and multiplexes them to restore temporal ordering before
passing them onto the Pixel Unit or Router respectively.

2.4.1 Texture Pipe Components
A Texture Pipe comprises six units:
 Parameter Setup Unit
 Texture Coordinate Unit
 Texture Index Unit
 Primary Texture Cache Unit
 Texture Filter Unit
 Shading Unit

2.4.1.1 Parameter Setup
The Parameter Setup Unit sets up the plane equations for the texture coordinates and
colour values used in the Texture Coordinate Unit and Shading Unit respectively. See
earlier for details.

2.4.1.2 Texture Coordinate
The Texture Coordinate Unit computes one or more perspectively correct texture
coordinates for each fragment and the appropriate level of detail (lod) when mip mapping.
In addition the texture coordinates can be perturbed by an earlier texture access (bump
mapping) or treated a the index into a cube (cube mapping). Higher qualities of filtering
are supported by way of anisotropic mip mapping and high order filters (bicubic for
example). Texture coordinates can have 1, 2 or 3 components to support 1D, 2D or 3D
texture maps. A fragment can have multiple texture maps applied to it and any
combination of the above are allowed by the APIs. There is support for 8 simultaneous
texture maps.
The Texture Coordinate Unit is a programmable SIMD array 4x4 in size which runs a
program once per sub-tile for those sub tiles with valid fragments. All the texture
calculations for a sub-tile are done before moving on to the next sub sub-tile.
A SIMD architecture is used so these steps are carried out sequentially, but on multiple
fragments at a time. If this 'program' takes n cycles to implement and the desired
performance is to generate one set of texture coordinates per cycle then the SIMD array
needs to hold n fragment processors. The value of n is constrained to be a power of two
for ease of implementation and as will be seen later (in the section on programming) the
above program takes about 14 cycles to run, hence n is ideally 16 processors.
Plane equation evaluation, cube mapping coordinate selection, bump mapping
transformation and coordinate perturbation, 3D texture generation, perspective division
and level of detail calculation are all done by the program. Anisotropic filtering loops
through the program depending on the amount of filtering needed. The integration of the
different filter samples in the Shading Unit is controlled from here.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-10Proprietary and Confidential
 3D labs

2.4.1.3 Texture Index Unit
The final conversion to fixed point u, v, w coordinate includes an out-of-range test so the
wrapping is all done in the Texture Index Unit.
The Texture Index Unit takes the u, v, w, lod and cube face information from the Texture
Coordinate Unit and converts it in to the texture indices (i, j, k) and interpolation
coefficients depending on the filter and wrapping modes in operation. Filtering across the
edge of a cube map is handled by surrounding each face map with a border of texels
taken from the butting face. Texture indices are adjusted if a border is present. The
output of this unit is a record which identifies the 8 potential texels needed for the filtering,
the associated interpolation coefficients, map levels and face number.

2.4.1.4 Texture Cache
The Primary Texture Cache Unit uses the output record from the Texture Index Unit to
look up in the cache directory if the required texels are already in the cache and if so
where. Texels which are not in the cache are passed to the Texture Arbiter so they can
be read from memory (or the secondary cache) and formatted. The read texture data
passes through this unit on the way to the Texture Filter Unit (where the data part of the
cache is held) so the expedited loading can be monitored and the fragment delayed if the
texels it requires are not present in the cache. Expedited loading of the cache and FIFO
buffering (between the cache lookup and dispatch operations) allows for the latency for a
round trip to the secondary cache without any degradation in performance, however
secondary cache misses cause stalls10.
The primary cache is divided into two banks and each bank has 16 cache lines, each
holding 16 texels in a 4x4 patch. The search is fully associative and 8 queries per cycle (4
in each bank) can be made. The replacement policy is LRU, but only on the set of cache
lines not referenced by the current fragment or fragments in the latency FIFO. The banks
are assigned so even mip map levels or 3D slices are in one bank while odd ones are in
the other. The search key is based on the texel's index and texture ID not address in
memory (saves having to compute 8 addresses). The cache coherency is only intended
to work within a sub tile or maybe a tile and never between tiles.11

2.4.1.5 Texture Filter Unit
The Texture Filter Unit holds the data part of the primary texture cache in two banks and
implements a trilinear lerp between the 8 texels simultaneously read from the cache. The
texel data is always in 32 bit colour format and there is no conversion or processing
between the cache output and lerp tree. The lerp tree is configured between the different
filter types (nearest, linear, 1D, 2D and 3D) by forcing the 5 interpolation coefficients to be
0.0, 1.0 or take their real value. The filtered results are passed on to the Shading Unit
and include the filtered texel colour, the fragment position (within the tile), a destination
register and some handshaking flags. The filtered texel colour can be feedback to the
Texture Coordinate Unit for bump mapping or any other purpose.

10 It is very likely that some texture access patterns (bilinear minification, for example) or simultaneous misses in all texture
pipes will also cause some stalls. The impact of these could be reduced by making the latency FIFO deeper.
11 Recall that the tiles are distributed between pipes so it is very unlikely adjacent tiles will end up in the same texture pipe and
hence Primary Texture Cache Unit.

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-11

2.4.1.6 Shader Unit
The Shading Unit is a programmable SIMD machine operating on a logical 8x8 array of
bytes (i.e. one per fragment position within a tile). The physical implementation uses a
4x4 array to save gate cost. The Shading Unit is passed up to 8 tiles worth of texture
data, has storage for 32 plane equations (an RGBA colour takes 4 plane equations) and
32 byte constant values. These values are combined under program control and passed
to the Pixel Unit, via the Texture Mux Unit, for alpha blending, dithering, logical ops, etc.
Fragments within a tile can be deleted so chroma keying or alpha testing is also possible.
All synchronisation (i.e. with the texture data) is done automatically in hardware so the
program doesn't need to worry where the texture data will come from or when it will turn
up.
Typically the Shading Unit program will do some combination of Gouraud shading, texture
compositing and application, specular colour processing, alpha test, YUV conversion and
fogging12.
The Shading Unit's processing element is 8 bits wide so takes multiple cycles to process a
full colour. The ALU has add, subtract, multiply, lerp and a range of logical operations. It
does not have divide or inverse square root operations. Saturation arithmetic is also
supported and multi byte arithmetic can be done. Programs are limited to 128 instructions
and conditionals jumps and subroutines are supported. The arrival of a Tile message
initiates the execution of a program and a watchdog timer prevents lockups due to an
erroneous program.
In order to support some of the more complex operations such as high order filtering,
convolution and go beyond 8 textures per fragment several programs can be run on the
same sub tile, with different input data before the final fragment colour is produced. This
multi pass operation is controlled by the Texture Coordinate Unit. This works in a very
similar way as the multi pass operation of the Pixel Unit.

2.5 Framebuffer
The Framebuffer subsystem is responsible for combining the colour calculated in the
Shading Unit with the colour information read from the framebuffer and writing the result
back to the framebuffer. Its simplest level of processing is therefore antialiasing
coverage, alpha blending, dithering, chroma keying and logical operations, but the same
hardware can also be used for doing accumulation buffer operations, multi buffer
operations, convolution and T buffer antialiasing. This is also the main focus for 2D
operations with most of the other units (except the rasterizer) being quiescent, except
perhaps for some of the esoteric 2D operations such as anisotropically filtered perspective
text.

2.6 Local Buffer
See Localbuffer in the Miranda P10 Programmer’s Guide volume I.

12 Table based fog is implemented as a 1D texture as it is too expensive to allow each fragment access to an internal look up
table.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-12Proprietary and Confidential
 3D labs

2.7 Memory Pipe
P10 memory is cache-based and all data types are stored as 8bpp planar tiles. All
memory access is logical/virtual and page faults cause CPU-like page swaps.
Memory is preferably 256 bit wide DDR devices running at 266MHz. From 32MB to
256MB of x32 devices are supported, or alternatively up to 512MB of x16 devices.13
SDR devices are not supported.
There are two independent 128bit controllers which hold alternating groups of 8 tiles.
Memory is divided into 4 regions corresponding to the 4 internal banks of a DDR device:

Bank Controller 0 Controller 1
0 0-7 8-15
1 16-23 24-31
2 32-39 40-47
3 48-55 56-63
0 64-71 72-79

Local memory is used to store color, depth, stencil, and texture data. These are largely
interchangeable depending on the microcode application context. For more information
on data typing and usage refer to the Miranda P10 Programmers Guide.
For more information on Memory devices and layouts see “Memory Systems” in the
Miranda P10 Reference Guide.

2.8 AGP/PCI Interface

2.8.1 PCI Interface

2.8.1.1 PCI Target features
 PCI Config Space transactions
 PCI Memory Space transactions
 PCI Fast Writes (2X and 4X)
 PCI I/O Space transactions
 VGA palette write snooping
 32-bit and 64-bit addressing (dual address cycles)
 PCI multi-function operation

2.8.1.2 PCI Master features
 PCI Memory Space transactions
 32-bit read and write data transfers
 32-bit and 64-bit addressing (dual address cycles)

13 The additional address lines will somewhat constrain performance with x16 memories.

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-13

2.8.2 AGPBus

AGP 4X is Intel’s high performance, component level interconnect targeted at 3D display
applications, which uses a 66MHz PCI specification as an operation baseline and provides
significant performance extensions to the PCI specification.
Implementing these features enables P10 to achieve better than 1 GByte per second
bandwidth from the host for instructions, textures, video data (limited by the host system
throughput).
The add-in slot defined for AGP uses a connector body which is not compatible with the
PCI connector. Boards designed for use in an AGP slot are not mechanically
interchangeable with PCI boards. P10 supports AGP2x, AGP4x and PCI at signal
voltages from 1.5vdc to 3.3vdc only. Legacy 5vdc PCI logic may severely damage the
chip.

2.8.2.1 AGP Master features
 AGP low-priority Read transactions
 AGP low-priority Write transactions
 AGP Fence and Flush transactions
 Operation at 1X, 2X, and 4X data rates
 Sideband and pipe operation
 48-bit addressing using sideband
 64-bit addressing using pipe and dual address cycles

2.8.3 SVGA
The on-chip SVGA unit is register level compatible with standard VGA devices and
requires no software emulation. It natively supports all standard VGA modes and certain
VESA VBE extended modes.
The following standard VESA VBE extended video modes are supported - those not
supportable by the SVGA unit may be supported using the Graphics Processor:

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-14Proprietary and Confidential
 3D labs

Table 1- 2 VESA VBE Graphics Modes

Mode
(hex)

Pixels Colors Window-
ed

Lin-
ear

Support-
able in
SVGA

Support-
able in
GP

0x100 640x400 256 3 3 3 3
0x101 640x480 256 3 3 3 3
0x103 800x600 256 3 3 5 3
0x105 1024x768 256 3 3 5 3
0x107 1280x1024 256 3 3 5 3
0x109 320x200 32K (5:5:5:1) 3 3 5 3
0x10D 320x200 64K (5:6:5) 3 3 5 3
0x10F 320x200 16.8M (8:8:8) 3 3 5 3
0x110 640x480 32K (5:5:5:1) 3 3 5 3
0x111 640x480 64K (5:6:5) 3 3 5 3
0x112 640x480 16.8M (8:8:8) 3 3 5 3
0x113 800x600 32K (5:5:5:1) 3 3 5 3
0x114 800x600 64K (5:6:5) 3 3 5 3
0x115 800x600 16.8M (8:8:8) 3 3 5 3
0x116 1024x768 32K (5:5:5:1) 3 3 5 3
0x117 1024x768 64K (5:6:5) 3 3 5 3
0x118 1024x768 16.8M (8:8:8) 3 3 5 3
0x119 1280x1024 32K (5:5:5:1) 3 3 5 3
0x11A 1280x1024 64K (5:6:5) 3 3 5 3
0x11B 1280x1024 16.8M (8:8:8) 3 3 5 3

The following VESA VBE text modes are supportable in the SVGA:

Table 1- 3 VESA VBE Text Modes
Mode (hex) Characters

(col/row)
0x108 80x60
0x109 132x25
0x10A 132x43
0x10B 132x50
0x10C 132x60

P10 allows VESA bankswitching to be done through the bypass to enable additional VESA
mode support. ModeX is RAMDAC. P10 incorporates high performance 350MHz
RAMDAC. Typical screen resolutions up to 1600x1200 are supported with refresh rates of
96Hz or 1920x1080 with refresh rates of 90Hz, or 2048x1536 at 60Hz. It supports packed
pixel formats, with color depths of 8, 16, 24, 32 and 40 bits per pixel. It has 4 dot-clock

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-15

phase locked loops (PLLs) and triple 10-bit D/A converters. The RAMDAC contains a
64x64x2 bit cursor array to support a 2, 4, or 16 color hardware cursor with cursor shapes
cache.

2.8.4 Video Overlay
The video overlay is used to display incoming video data on screen. The overlay selection
is based on a transparent color, the overlay key, which can be any RGB color or alpha
value. Optionally, the overlay can be blended with the main image by using a 2-bit blend
factor. A filter process supports zooming and shrinking at any rate. It combines four
pixels into one by using bilinear filtering to achieve best results. Furthermore the filtered
output is optionally converted from YUV to RGB color space format.

2.9 DMA
P10 supports a comprehensive set of DMA engines and uses Circular buffer input stream
handling to reduce Command DMA setup overhead and latencies. Input streams can be
from host or on-card memory with two levels of nesting. Output DMA returns data to host
or local memory, performs image uploads and state return.

2.9.1 Graphics Core to Graphics I/O – Upload Controller
The GPIO Upload DMA Unit – GPIOUD – uploads message data from the graphics
pipeline to the PCI and AGP bus masters.
The unit is controlled by PCI slave register writes and reads, which are resynchronised
from P clock to K clock and back through the PCI slave write (PciGpWr) and PCI slave
read (GpPciRd) FIFOs respectively.
The GP input half of the unit maintains 2 input message ports and 16+1 circular buffers.
These generate outgoing message streams on the API and Isochronous output message
FIFOs.
The GP output half of the unit maintains an output message port and a Sync interrupt
signal. These are driven from the incoming message stream on the input message FIFO.

• Autonomous - set-up/fetch parallelism
• No wait state - maximum transfer rate
• Programmable block size - large DMA buffers
• Separate DMA controllers for upload and download can run concurrently

2.9.2 Graphics I/O to Geometry and Rasterizer – GPIO Command DMA
The GPIO Command DMA Unit issues DMA requests and processes the return data for
GP command packets. These are inserted into the message stream. DMA packets are
usually submitted via circular buffers which manage the GP core command interface.

 Video Unit and RAMDAC GLINT R5 Reference Guide Volume I

2-16Proprietary and Confidential
 3D labs

2.9.3 Circular Buffers
Apart from the input message port, the circular buffer provides the only command
interface to the GP core. They replace the GP Input FIFO and command DMA schemes of
earlier chips.
The intention is that 16 user contexts (Api) and the GDI+ driver (Iso) each have their own
private circular buffer backed by a DMA engine.14 Wraparound is handled automatically
by the GPIO Bus Interface.

Figure 2.5 Graphics Processor I/O

14 A “user context” here is considered to be the display driver, an OpenGL ICD process, or anything else wanting to make use
of the GP core for 2D or 3D rendering.

 Miranda P10 Reference Guide Volume I Layout

3D labs Proprietary and Confidential 2-17

2.9.4 Interrupt Controller
• End-of-DMA - allows DMA chaining
• VSYNC - efficient double buffering
• Scanline - special effects
• Texture invalid
• Bypass DMA interrupt
• I2C start condition - alert host to start of I2C transfer
• Sync - indicates graphics core is idle
• Error - e.g. writing to a full FIFO

2.9.5 Video Streaming
P10 supports digital video output. The 24-bit streamed output is designed to work with
common PAL/NTSC encoders and flat panel controllers.

2.9.6 ROM support
P10 supports a Flash ROM. The ROM stores code needed for device-specific
initialization and the SVGA BIOS. For more information see the P10 Reference Guide,
volume 4, “Reset”.

 Miranda P10 Reference Guide Volume I Video Unit

3D labs Proprietary and Confidential 3-1

3
3 A ddre s s M a ps a nd R e gions

3.1 PCI Configuration Region
The PCI Configuration Space is intended to provide an appropriate set of configuration
‘hooks’ which satisfy the needs of current and anticipated system configuration
mechanisms. The registers in this 256-byte space are accessed and modified by the use
of PCI Configuration Read and Write commands, and are normally initialised by BIOS or
similar low-level code at system power-up and reset. The configuration registers are
described in detail in P10 Reference Guide volume II.
When configured for multi-function operation the bus interface provides a unique 256-byte
configuration space for each PCI function, but will map accesses to other regions to the
same underlying hardware regardless of the function being addressed.

3.1.1 Control Registers
Region Zero is a 256 KByte region containing control registers, and ports to and from the
graphics processor. The control space is mapped twice within the 256 KByte region. In the
second 128K the registers are mapped to be byte swappable for big endian hosts. See
Section 3 of this document for further details of Region Zero.

3.1.2 Memory Apertures
Two separate apertures are provided to allow access to local memory. Each has a
programmable size, and can be disabled if required.
As well as being used to access local memory, these two apertures can also be
programmed to allow reading and writing of the Expansion ROM. This ensures that the
“ROM” is visible beyond system boot time, allowing an EEPROM device to be
reprogrammed in the field. Finally, either aperture can be programmed to forward memory
accesses to the VGA memory controller.

3.1.3 Expansion ROM
In earlier 3Dlabs bus interface designs a number of parameters for the bus interface were
initialised at reset time using pull-up or pull-down resistors connected to configuration
pins. These pins were normally tri-state at reset, and their state was sampled on the
trailing edge of reset. These configuration signals were then loaded into the ChipConfig
register, which was used to control the initialisation and operation of the device.
This approach becomes less practical as external signal speeds increase, and so the
current design loads all but the most critical initialisation information from the external
Expansion ROM. Loading from the ROM is enabled using a single “RomConfig”
configuration pin, and default initialisation values are used for registers when loading is
disabled.

 Video Unit Miranda P10 Reference Guide Volume I

3-2Proprietary and Confidential
 3D labs

Once the Configuration Table pointer has been read a sequence of 32-bit words are
loaded from the table into configuration space registers in the PCI Config unit and control
registers in the ROM Controller unit:

Table
Offset

Table Field Destination Unit Destination Register

00h BusConfig PCI Config CFGBusConfig
04h FunConfig PCI Config CFGFunConfig
08h Subsystem PCI Config CFGSubsystemID and CFGSubsystemVendorID
0Ch DevConfig PCI Config CFGDevConfig
10h DevConfigMask PCI Config CFGDevConfigMask
14h RomTiming ROM Controller ROMTiming

The CFGBusConfig, CFGFunConfig, CFGDevConfig, and CFGDevConfigMask
registers are described below. Each of these four user-defined registers is shared
between all functions in a multi-function device, and accesses through any function are
mapped to the same underlying register hardware by the bus interface.

3.1.4 VGA Addresses
The bus interface can be configured to respond to standard VGA-compatible Memory and
I/O Space addresses (memory addresses 0xA0000 through 0xBFFFF, and various I/O
addresses in the ranges 0x3B0 through 0x3BB and 0x3C0 through 0x3DF). Further details
are given in Section 4 of this document (“Video and RAMDAC”).

 Miranda P10 Reference Guide Volume I Video Unit

3D labs Proprietary and Confidential 3-3

BIST Header Type Latency Timer Cache Line Size

Revision ID Class Code

Status Command

Device ID Vendor ID

Subsystem ID Subsystem Vendor ID

CardBus CIS Pointer

Base Address Registers

Expansion ROM Base Address

Reserved Capabilities Ptr

Reserved

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

31 24 16 8 0

Table 3.1 Predefined and Base Address Registers (offsets 00h to 3Fh)

 Video Unit Miranda P10 Reference Guide Volume I

3-4Proprietary and Confidential
 3D labs

40h

44h

48h

4Ch

50h

54h

E0h

E4h

E8h

ECh

F0h

F4h

F8h

FCh

31 24 16 8 0

Reserved AGP Revision AGP Next Ptr AGP Capability ID

AGP Status

AGP Command

PM Capability ID PM Next Ptr PM Capabilities

PM_BSE PM Data PM Control/Status

DevConfig

BusConfig

DevConfigMask

Indirect Data

Indirect Address

Reserved

Indirect Trigger

FunConfig

Table 3.2 AGP, Power Management, and User-Defined Registers (offsets 40h to FFh)

 Miranda P10 Reference Guide Volume I Video Unit

3D labs Proprietary and Confidential 3-5

3.2 Region Zero Address Map
Region Zero is a 256 KByte region containing control registers and ports to and from the
graphics processor. The control space is mapped twice within the 256 KByte region. In the
second 128K the registers are mapped as byte swapped for big endian hosts.

Region Zero Address Map

Address Range Size (bytes) Sub-Region Select Byte Swap
0x00000 – 0x00FFF 4 K Bus Interface CSR No
0x01000 – 0x01FFF 4 K Interrupt Control No
0x02000 – 0x02FFF 4 K Video Head 0 Control No
0x03000 – 0x03FFF 4 K Memory Control No
0x04000 – 0x04FFF 4 K VGA Control No
0x05000 – 0x05FFF 4 K ROM Control No
0x06000 – 0x06FFF 4 K Bypass Control No
0x07000 – 0x07FFF 4K Video Port Control No
0x08000 – 0x08FFF 4K Video Head 1 Control No
0x09000 – 0x0EFFF 24 K reserved n/a
0x0F000 – 0x0FFFF 4 K GPIO Driver Registers No
0x10000 – 0x1FFFF 64 K GPIO “User” Registers No
0x20000 – 0x20FFF 4 K Bus Interface CSR Yes
0x21000 – 0x21FFF 4 K Interrupt Control Yes
0x22000 – 0x22FFF 4 K Video Head 0 Control Yes
0x23000 – 0x23FFF 4 K Memory Control Yes
0x24000 – 0x24FFF 4 K VGA Control Yes
0x25000 – 0x25FFF 4 K ROM Control Yes
0x26000 – 0x26FFF 4 K Bypass Control Yes
0x27000 – 0x27FFF 4K Video Port Control Yes
0x28000 – 0x28FFF 4K Video Head 1 Control Yes
0x29000 – 0x2EFFF 24 K reserved n/a
0x2F000 – 0x2FFFF 4 K GPIO Driver Registers Yes
0x30000 – 0x3FFFF 64 K GPIO “User” Registers Yes

 Table 3.3 Region Zero Address Map

3.2.1 Reserved Registers
All accesses to reserved sub-regions in the table above are intercepted and handled by
the bus interface: writes are discarded, and reads return zero. Accesses to non-reserved
sections of the address map are forwarded to the appropriate target unit. The bus
interface has no information about the internal register map of individual target units, so
where target units have a sparse register map they themselves are responsible for

 Video Unit Miranda P10 Reference Guide Volume I

3-6Proprietary and Confidential
 3D labs

handling accesses to reserved registers. By convention, they too should absorb writes
and read back zero from reserved addresses.

3.2.2 PCI Address Regions
The PCI Slave interface implements six PCI Address Regions, shown in the table below.
The standard VGA compatible Memory and I/O Space addresses are decoded when the
device has been suitably configured. These addresses do not form a single contiguous
region but are mentioned in the table for completeness:

PCI Address Regions
Region Address Space Size (bytes) Description Comments

Config Configuration 256 PCI Configuration PCI Special
Zero Memory 256 K Control Registers relocatable
One Memory configured Memory Aperture One relocatable
Two Memory configured Memory Aperture Two relocatable
ROM Memory 64 K Expansion ROM relocatable
VGA Memory & I/O - VGA Address optional & fixed

Table 3.4 PCI Address Regions

 Miranda P10 Reference Guide Volume I Video Unit

3D labs Proprietary and Confidential 4-1

4
4 Vide o a nd R A M DA C

P10 Video displays data held in memory. It generates the video timing, requests data from
memory, formats the data returned,and prepares it for display. There are four indpendent
channels that can each request data; they are normally used for the underlay, the main
image, the overlay, and the cursor. The four channels are combined to form a single
channel by applying color key and blend operations. The result is passed through two
lookup tables one after the other before being sent to a display device such as DAC or a
TV encoder.

Address
Generator

Format

Format

Format

Timing

LookU
pZ

ero

DAC

TMDS

TV

Memory
Controller

Underlay

Main

Overlay

LookU
pO

ne

D
isplay

Background or composite

Pixel Processor Lookup

VGA

Key

Composite

Format Cursor

C
hannel

All channels are identical except that they have a fixed stacking order (cursor over overlay
over main over underlay) and the main and overlay channels can be run in stereo mode.

4.1 LUTs
There are two lookup tables to remap the pixel color. Typical uses include:
 using one table to dereference index data while another gamma corrects RGB data
 supporting two different gammas (perhaps one for video and another for 3D).
Each channel selects which LUTs to use from a bitfield in a register; each channel can
use one or both LUTs. Alternatively the LUT may be selected from the upper 2 bits of the
alpha component, again as a bit field indicating one or both LUTs.
If a LUT is in index mode, as opposed to RGB mode, it uses one channel to index all 3
components; the channel to use can be selected.

4.2 Display Resolutions

 Video Unit Miranda P10 Reference Guide Volume I

4-2Proprietary and Confidential
 3D labs

TBD

4.3 Display Data Channels
P10 supports both analogue and digital I/O. Digital input channels include an I2C bus

4.4 Analogue Display Timing Parameters
All timing values are relative to the first clock of vertical blank (i.e. the first pixel in vertical
blank is at zero horizontal and 0 vertical). The horizontal values are defined in pixels and
the vertical value in lines. The base address of the frame buffer is the first pixel to be
displayed. Addresses must be aligned to the nearest tile and offsets with the tile specified
through the pan regsiter. The screen stride may be different to the screen width.
The values loaded into registers represent the pixel (or line) on which the event takes
place, so the horizontal blank end register holds the last pixel of blank; as the count is
from zero, the number in the register is length of the horizontal blank.

(0,0)

H Blank

V
Blank

H
Sync

V
Sync

H Sync Start
H Sync End

H Blank End

V Sync Start

V Sync End

V Blank End

Active Video

First active pixel = base address

H Total

V Total

(0,0)

H Blank

V
Blank

H
Sync

V
Sync

H Sync Start
H Sync End

H Blank End

V Sync Start

V Sync End

V Blank End

Active Video

First active pixel = base address

H Total

V Total

There is an implementation requriement that the horizontal total value be no less than 4
and that there must be at least one line of vertical blank.

 Miranda P10 Reference Guide Volume I Video Unit

3D labs Proprietary and Confidential 4-3

4.4.1 Synchronization
There are two lock bits which may be used to synchronize different channels within a
head, or different heads. The lock registers hold a mask of which channels take part in the
lock; there are two lock registers per head.
The locking operation uses an open-drain pin which is pulled high by a resistor. When a
channel is not ready to synchronize it pulls the pin low, so when the pin is sampled it
returns ‘not locked.’ When a channel is ready to synchronize it tri-states the pin, and when
all channels have tri-stated the pin is pulled high and returns ‘locked.’
All heads have access to all lock pins so they can be used to synchronize two heads in
the same chip; the pins can also be shared by separate chips.
Note: Synchronization, PLL setup and Genlocking are described in more detail in

the P10 Programmer’s Guide Chapter 6 – Synchronization – and section
5.6.3, Dual Head Video Oputput. .Sync on Green is not supported on P10

4.4.2 Multi-Head
There is one PClk process that holds all registers for all heads; most registers are unique
to the head they control, some are shared by all heads. The DClk processes are repeated
for each head in the system.

4.5 Digital Display Timing Parameters
VIP2 DTV display formats are specified by the position of the SAV and EAV. These in turn
identify the task, field, and blanking intervals.
In the VPU, horizontal samples are counted from 0 at the start of the horizontal blanking
interval, and the first line of the frame is the first line of the vertical blanking interval. In
interlaced video, with two vertical blanking intervals, the start field is also specified.
For example, this is how the 525-line System is formatted for the VPU:

 Video Unit Miranda P10 Reference Guide Volume I

4-4Proprietary and Confidential
 3D labs

Refer to the P10 Programmer’s Guide for more information.

4.6 Multi-rasterizer and Genlock
Refer to the Miranda P10 Programmer’s Guide for details of multi-rasterizer and Genlock
implementation and use.

 Miranda P10 Reference Guide Volume I Video Unit

3D labs Proprietary and Confidential 4-1

4

INDEX

1.3.1 Isochronous Command Stream 1-1
AGP 4X 2-13
AGP/PCI Interface 2-12
AGPBus 2-13
Antialiasing 2-5
Circular Buffers 2-16
Context Switching 1-1
Cull Unit 2-2
DMA 2-15
Flash ROM 2-17
Graphics Core to Graphics I/O – Upload

Controller 2-15
Interrupt Controller 2-17
ModeX 2-14
PCI Address Regions 3-6
PCI Configuration Region 3-1
PCI Master 2-12

PCI Target 2-12
Primitive Set Up Sub System 2-3
Rasterization 2-5
Rasterizer 2-3
Region Zero Address Map 3-5
SVGA 2-13
Table 1- 2 VESA VBE Graphics Modes 2-14
Texture 2-6
Texture Cache 2-10
Texture Coordinate 2-9
Texture Index Unit 2-10
Texture Pipe Components 2-9
Vertex Machine Unit 2-2
Vertex Shading Unit 2-2
VESA bankswitching 2-14
VESA VBE Text Modes 2-14
Video Overlay 2-15

	P10
	Draft
	3Dlabs®
	P10
	Proprietary and ConfidentiaL Information
	1 Introduction
	1.1 Design Performance
	1.2 Changes from Earlier Chips
	1.2.1 Tile-based working
	1.2.2 Multitasking
	1.2.3 Command Input
	1.2.3.1 Circular Buffers
	1.2.3.2 Vertex Arrays and Vertex Caching for Indexed Arrays

	1.2.4 Scalability
	1.2.5 Legacy Support

	1.3 Block Diagrams
	1.3.1 Isochronous Command Stream and Context Switching

	2 Graphics Pipeline Organization
	2.1 Transform and Lighting System
	2.1.1 Current Parameter Unit
	2.1.2 Vertex Shading Unit
	2.1.3 Vertex Machine Unit
	2.1.4 Cull Unit (Primitive Assembly)
	2.1.5 Geometry Unit

	2.2 Rasterizer Setup
	2.2.1 Primitive Setup Subsystem

	2.3 Rasterizer
	2.3.1 Rasterization Process
	2.3.2 Antialiasing

	2.4 Texture
	2.4.1 Texture Pipe Components
	2.4.1.1 Parameter Setup
	2.4.1.2 Texture Coordinate
	2.4.1.3 Texture Index Unit
	2.4.1.4 Texture Cache
	2.4.1.5 Texture Filter Unit
	2.4.1.6 Shader Unit

	2.5 Framebuffer
	2.6 Local Buffer
	2.7 Memory Pipe
	2.8 AGP/PCI Interface
	2.8.1 PCI Interface
	2.8.1.1 PCI Target features
	2.8.1.2 PCI Master features

	2.8.2 AGPBus
	2.8.2.1 AGP Master features

	2.8.3 SVGA
	2.8.4 Video Overlay

	2.9 DMA
	2.9.1 Graphics Core to Graphics I/O – Upload Controller
	2.9.2 Graphics I/O to Geometry and Rasterizer – GPIO Command DMA
	2.9.3 Circular Buffers
	2.9.4 Interrupt Controller
	2.9.5 Video Streaming
	2.9.6 ROM support

	3 Address Maps and Regions
	3.1 PCI Configuration Region
	3.1.1 Control Registers
	3.1.2 Memory Apertures
	3.1.3 Expansion ROM
	3.1.4 VGA Addresses

	3.2 Region Zero Address Map
	3.2.1 Reserved Registers
	3.2.2 PCI Address Regions

	4 Video and RAMDAC
	4.1 LUTs
	4.2 Display Resolutions
	4.3 Display Data Channels
	4.4 Analogue Display Timing Parameters
	4.4.1 Synchronization
	4.4.2 Multi-Head

	4.5 Digital Display Timing Parameters
	4.6 Multi-rasterizer and Genlock

