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1 Introduc tion 
 

The P10 Graphics Processor is a scalable design using extensive parallelism and 
programmability to render multiple primitives per clock cycle and support texture-
intensive APIs such as Microsoft DX8.  Using programmable T&L and programmable 
pixel shaders in conjunction with highly optimised fixed-function units results in a 
simpler, faster and more flexible design. 
Programmable registers also allow dynamic reconfiguration of the number of vertex 
shaders, the number of texture pipes and the number of rasterizers.    

1.1 Design Performance 
Performance estimates are based on design simulation rates pending availability of 
silicon-based test results.  Primitive rates assume single tile coverage (reduced to 8x4 for 
z), Single directional light, Gouraud shaded, Depth buffered and .13 micron 
manufacturing.  The feature set shown is in addition to features normally supported on 
earlier devices.   

P10 Performance Overview 
3Dmark (DX8)  B e nc h-

m a rk s  ProCDRS-03 (Workstation) 133 
Quake III Quincunx FSAA (OpenGL)  
Points, lines 75M lines/Sec. P

rim
i-

tives
 

Triangles 75M lines/Sec. 
AA Lines 75M lines/Sec. 
  
Vertex rendering – no depth, texture or 
lighting 

150M vertices/sec. T
rans- 

form
 &

 
Lighting

 

Vertex rendering – with depth, not texture 
or lighting 

132M vertices/sec. 

Vertex rendering – texture and fog, no 
lighting 

106M vertices/sec. 

Scissor (core:memory) 19.2: - G/sec. (64 primitives/ 
cycle) 

P
ixel Fill 
R

ates
 

32bpp Clear (core:memory) 4.8:4.25 G/sec. 
GID rejected (core:memory) 19.2:17 G/sec. 
Trilinear (core:memory, 32bpp, one 
texel/pixel read) 

1.2 : 1.1G/s 

Peak Memory Bandwidth  17 GBytes/s Bas 
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P10 Performance Overview 
Max. memory 128Mbytes 
Operating Frequency (0.13 micron/.18 micron) 300MHz/200 

MHz 
Up to 8 textures per primitive with any combination of 
trilinear, 3D, anisotropic filtering, bump mapping or cube 
mapping. 

 
4  

Programmable texture co-ordinate generation 4  
Programmable shaders (i.e. texture combiners) 4  
Programmable pixel unit 4  
Accumulation buffering and convolution 4  
Precomputed displacement maps and tesselation 4  
T buffer full-scene antialiasing 4  
Integrated geometry and lighting 4  

Table  1.1  P10 Performance Overview 

   
  

1.2 Changes from Earlier Chips 

 
 Table 1.3  Lighting Performance 

Because of the extent of P10’s paradigm shift a complete list of changes is pointless.  
However the table below illustrates the areas where developers wil find the most 
extensive innovation. 
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Previous Rasterizer Chips (P4/R4, MX) P10 

Scanline Framebuffer Tiled framebuffer 
DDA based interpolators Plane equations 
Edge-walking rasterization Tile-seeking rasterization 
Multiple cycles per primitive Multiple primitives per cycle 
Fixed function units Fixed/Programmable hybrid 
FIFO-based memory  Cache-based memory 
Asynchronous pipeline Parallel pipes with pre-emption 
Command and control data visits every unit Command and control independent routing  

 Table 1.1  Evolutionary Changes 

1.2.1 Tile-based working 
P10 adopts the tile as its sole unit of internal work.  All operations are performed on 8x8 
square screen-aligned planar byte pixel tiles similar to the 64x1 pixel spans used in 
earlier chips.  All data types are stored the same way, so for example anything (e.g. the 
Depth buffer) can be a texture, and it is possible to render to a texture.  Each memory 
access returns a planar byte tile.  Two or more accesses are used for pixel depths greater 
than 8 bits, which allows unusual formats such as 24, 40 and 48 bpp.  All memory 
accesses are virtual and page faults are handled with a CPU-like page swap. 
This uniformity results in tile scalability and substantial performance improvements, 
particularly in 3D and small 2D primitives (e.g. characters) where the improved scanline 
coherence and  memories efficiencies are most noticeable.  Performance is further 
enhanced by the use of 256-bit DDR memories running at 266MHz (peak bandwidth 
17GB/s).  

1.2.2 Multitasking 
Architecture innovations include the Context unit, which implements pre-emptive 
multitasking to support time-critical operations such as render during frame blank.  The 
Context unit caches context data and keeps a copy in local memory.  A small cache 
handles frequently updated values such as mode registers.  When a context switch is 
needed the cache is flushed, the new context record is read from memory and the data 
converted into a message stream to update downstream units.  Because only a small 
amount of cache data needs to be saved this process can be very fast – typically ¼ 
scanline. 

1.2.3 Command Input 
Unlike earlier graphics processors, P10 command and control data (register updates, 
mode changes etc.) does not generally take the same route as pixel data.  This improves 
flexibility and bandwidth between units. 
P10 uses two independent Command Units - one servicing the GP stream (for 3D and 
general 2D commands), the other servicing the Isochronous stream.  Both command units 
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manage the Circular Buffers and Input DMA.  The GP Command unit also manages 
Vertex Arrays.  

1.2.3.1 Circular Buffers 
Circular buffers, also new in P10, allow small packets of work to be transferred rapidly 
without incurring the delays and overhead of setting up a DMA buffer and making an 
escape call to the O/S.  Because DMA transfers take time to initiate they are normally 
optimized for large bursts of data to improve efficiency.  This can result in the graphics 
system being idle while some work has accumulated in the DMA buffer, but not enough to 
trigger a burst.   
Circular buffers are usually stored in local memory and mapped into the ICD.  When 
commands and data are added to the circular buffers, chip-resident write pointer registers 
are updated accordingly (without any O/S intervention).  When the current circular buffer 
goes empty the hardware automatically searches the pool of 16 circular buffers for more 
work and instigates a context switch if necessary. 
Circular buffers process the command stream identically to input DMA and can even call 
DMA buffers. 

1.2.3.2 Vertex Arrays and Vertex Caching for Indexed Arrays 
Vertex arrays are supported for compactness and flexibility in data layout.  An array 
element can hold up to 16 parameters, which can be stored consecutively in memory or 
held in arrays.  Vertex elements can be accessed in sequence or using array indices.  The 
most recent 16 array indices are cached to allow comparison with the current index to 
check for vertex meshing, which in turn allows substantial savings in memory reads and 
Shader processing. 

1.2.4 Scalability 
The design allows unusual flexibility in adapting performance to specific applications and 
to market targets as well as future proofing: 

• Tile size can be varied 

• the number of texture pipes and vertex shaders is configurable 

• Changing the number of pipes and shaders does not affect the API 

• Memory devices can be picked to suit market conditions (although 256bit DDRs are 
preferred).   

• When a programmable register is idle it can be reprogrammed on the fly as an 
additional rasterizer to further improve fill and small primitive rates. 

1.2.5 Legacy Support 
Because of the design paradigm shift it has not been possible to continue support for 
many legacy items.  This has incidentally removed up to 40% of the total code lines,  
which translates into a substantial reduction in gate count and chip complexity and a 
smaller, more flexible and faster design.  
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1.3 Block Diagrams 

  
 
Figure 1.1   Chip-level Block Diagram 
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Figure 1.2   Transformation and Lighting Block Diagram 



 Video Unit and RAMDAC  GLINT R5 Reference Guide Volume I  

1-8 Proprietary and Confidential 3D labs 

 
 

Figure 1.3   Rasterizer Block Diagram 
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1.3.1 Isochronous Command Stream and Context Switching 
Microsoft’s ‘hot button’ for GDI+ establishes a new requirement for real-time processing 
slaved to the display state to support tasks such as rendering during frame blank or non-
tear bliting to a window.   
P10 addresses this need by implementing a separate graphics core pre-emption channel 
which uses fast on-board context-switching (including switching during a primitive).  
As context switchable state  flows through into the rasterizer it goes through a Context 
Unit which snoops and caches the context data and keeps a local copy for context 
switches.   
A second command queue handles real-time rendering commands, i.e. those using Video 
Timing Generator (VTG) and scanline timestamps.  If the context switch is to allow 
isochronous rendering it invokes a small, dedicated isochronous stream rasterizer.  A 
typical partial context switch to and from an isochronous context should take less than 700 
cycles (3.5μs at 200MHz or ¼ scanline).   
The Isochronous rasterizer only deals with rectangular primitives, which it can render in 
either direction.  It is not a parallel blit engine – it is invoked only for Isochronous service 
requests using existing processor capacity.     
For more information, see the Timestamp, Changeport and HoldPort commands in the 
Miranda P10 Reference Guide volume III. 
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2  
2 G ra phic s  P ipe line  Orga niza tion 

This chapter describes the Miranda P10 graphics pipeline functional layout.     

2.1 Transform and Lighting System 
Transform and Lighting (T&L) functionality includes five functional groupings (‘Units’) 
which handle vertex setup, transforms, lighting and culling.     

2.1.1 Current Parameter Unit 
The Current Parameter unit tracks the 16 possible vertex parameters (position, colour(s), 
texture coordinates(s) and normal) for each vertex and forwards any missing ones to the 
Vertex Shader Unit. 
In the process, it substitutes any missing parameters the most recent version of that 
parameter. This is particularly relevant for OpenGL where a parameter like colour can be 
sent once and it is then applied to all subsequent vertices until re-sent. This is frequently 
found where the Begin/End paradigm is in use.  
Note: For vertex arrays or vertex buffers in D3D  this functionality is not needed as 

each parameter is supplied for every vertex.  
To avoid passing all 16 parameters for each vertex to the Vertex Shader Unit, this unit 
counts how many times each parameter has been sent and stops sending when each 
recipient vertex store now holds it.  For example if the Vertex Shader processes n vertices 
in parallel and the vertex store is double-buffered then after each parameter has been 
sent 2n times each vertex store should contain current values. This causes an initial flurry 
of transfers during context switches but after 2n vertices the steady state condition prevail 
and the minimum number of messages will be generated per vertex.   
Note: The parameters are typeless – the names (VertexData0…VertexData15) 

are simply placeholders.  The program running in the Vertex Shader Unit 
assigns meaning to the parameters, although conventional meanings are 
used in our documentation.  This allows the use of the Vertex Shader for 
much more varied applications. 

OpenGL can interrogate the current vertex values at any time.  To avoid the performance 
constraints of tracking this in software, the GetCurrent command dumps the current 
values using the Upload128 command so that they appear in the Host Out FIFO.  From 
there they can be read or DMAed into memory.  
All 16 parameters are written from this unit and the Vertex Machine Unit appends the 
current edge flag information.  
Colour Material support: OpenGL allows the Colour parameter to be used to edit one or 
more material parameters on a per vertex basis. Updating the material values stored in 
the Coefficient memory in the Vertex Shading Unit would be very bad for performance as 
this would prevent the parallel vertex processing (it is done as a SIMD architecture where 
the Coefficient memory is broadcast to all processing elements). Instead the program is 
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changed to expect the material parameter to come from the colour parameter in the vertex 
store rather than the material value in the Coefficient memory. When the Colour Material 
mode changes the real material parameter(s) must be updated from the current colour. As 
outlined above the driver software is not tracking this parameter and you certainly don't 
want to do a Get to find its value (getting state out of the hardware is 

2.1.2 Vertex Shading Unit   
This performs the bulk of the transformation, lighting and texture generation work.  As 
noted previously the unit is fully programmable.  Programs can be up to 256 instructions 
long, including subroutines and loops.  Details of programmable registers and the Vertex 
Shader instruction set are in “Programmable Registers”, Volume III of the P10 Reference 
Guide.   
The Vertex Shading Unit is implemented as a 16 element SIMD array, with each element 
(VP) working on a separate vertex.  The floating point ALU in each VP is a scalar 
multiplier accumulator which also supports multi cycle vector instructions. 

2.1.3 Vertex Machine Unit 
Co-ordinate results from the Vertex Shader are passed to the Vertex Machine Unit via the 
message stream.  The 16 parameter results go directly to the Geometry Unit via a private 
bus.  (Two output ports allow for a higher vertex throughput.) 
The Vertex Machine Unit monitors vertex coordinates (really window coordinates now) as 
they pass through.  When enough vertices for the given primitive type have passed 
through, the unit issues a draw command for the appropriate primitive.  Keeping the 
orientation of triangles constant, which vertex is a provoking vertex, when to reset the line 
stipple, etc. are all handled here.  The Vertex Machine uses all 16 vertex cache entries 
(even though for many of the primitives it is not possible to extract any more than the 
inherent cache locality) as this greatly reduces the chance of stalling while loading a 
scoreboarded parameter register. 

2.1.4 Cull Unit (Primitive Assembly) 
The Cull Unit caches the window coordinates for the 16 vertices.  When cull and geometry 
processing for a primitive starts it uses the cached window coordinates to test clip against 
the viewing frustum and, for triangles, do a back-face test.  Any primitives failing these 
tests (if enabled) are discarded.  Any primitives passing these tests are passed on.  If the 
clip test is inconclusive the primitive is further tested against the guard band limits.  A 
pass against these new limits means that it will be left to the rasterizer to clip the primitive 
while it is being filled - it can do this very efficiency and spends very little time in 'out of 
view' regions.  A fail against the guard band limits or the near, far or user clip plane will 
cause the primitive to be geometrically clipped in the Geometry Unit. 

2.1.5 Geometry Unit 
The Geometry Unit holds the full vertex cache for 16 vertices.  Each entry holds 16 
parameters and a window coordinate.  As each primitive is processed the Geometry Unit 
checks that the necessary vertex data is present.  It tracks the progress of the destination 
circular buffers and the state of the downstream setup units.  If vertex data is missing it 
supplies it.  The Geometry Unit can accept vertex data faster than it can be passed on to 
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the rasterizer and it filters out vertex data for culled primitives.  This allows for a faster cull 
rate than rendering rate. 

Note: Primitives which need to be geometrically clipped are clipped in this Unit. 1  
The clip polygon is rendered as a series of triangles. 

2.2 Rasterizer Setup 
The Rasterizer’s Primitive Setup Subsystem decomposes geometric objects into 
primitives and  converts windows relative coordinates into absolute coordinates. 

2.2.1 Primitive Setup Subsystem 
This subsystem is made up from: 

• Primitive SetUp Unit 

• Depth SetUp Unit 

• Parameter SetUp Unit(s) 
Input to this subsystem is the coordinates, colours, texture coordinates, etc. per vertex 
and these are stored in local vertex stores.  The vertex stores are distributed so each 
Setup Unit only holds the parameters it is concerned with. 
Primitive Setup does any primitive specific processing.  This includes calculating the area 
of triangles, splitting stippled lines (aliased and antialiased) into individual line segments, 
converting lines into quads for rasterization and converting points into screen aligned 
squares for rasterization.  Window relative coordinates are converted into fixed point 
screen relative coordinates.  Finally it calculates the projected x and y gradients from the 
floating point coordinates (used when calculating the parameter gradients) for all 
primitives. 
Depth Setup and Parameter Setup are very similar with the differences being limited to 
the parameter tag values, input clamping requirements and output format conversion.  
The Depth Setup Unit has a 16-entry direct-mapped vertex store.  The common part is a 
plane equation evaluator which implements 3 equations - one for the gradient in x, one for 
the gradient in y and one for the start value.  These equations are common for all primitive 
types and are applied once per parameter per primitive.  The Setup units are adjacent to 
their corresponding units which will evaluate the parameter value over the primitive. 

 

2.3 Rasterizer 
The Rasterizer subsystem consists of a  Rasterizer Unit and a Rectangle Rasterizer Unit. 
The Rectangle Rasterizer Unit only rasterizes rectangles and is located in the isochronous 
stream – see the Isochronous Command Stream section for a discussion.  . 
The input to the Rasterizer Unit is in fixed point 2's complement 14.4 fixed point 
coordinates.  When a Draw* command is received the unit will then calculate the 3 or 4 

                                                                   
1  This is done by calculating the barycentric coordinates for the vertices in the clip polygon using the Sutherland Hodgman 
clipping algorithm.   
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edge functions for the primitive type, identify which edges are inclusive edges (i.e. should 
return inside if a sample point lies exactly on the edge2) and identify the start tile.   
Once the edges of the primitive and a start tile is known the rasterizer seeks out tiles 
which are inside the edges or intersect the edges.  This seeking is further qualified by a 
user defined visible rectangle (VisRect) to prevent the rasterizer visiting tiles outside of the 
screen/window/viewport.  Tiles which pass this stage will be either totally inside or partially 
inside the primitive.  Tiles which are partially inside are further tested to determine which 
fragments in the tile are inside the primitive and a tile mask built up.   
The output of the rasterizer is the Tile command which controls the rest of the core.  Each 
Tile holds the tile's coordinate and tile mask.  The tiles are always screen relative and are 
aligned to tile (8x8 pixel) boundaries.  Before a Tile command is sent it is optionally 
scissored and masked using the area stipple pattern.  The rasterizer generates tiles in an 
order that maximises memory bandwidth by staying within a single memory page as much 
as possible.  Memory is organised in 8x8 tiles3 and these are stored linearly in memory.   
The rasterizer has an input coordinate range of ±8K, but after visible rectangle clipping 
this is reduced to 0…8K.  This can be communicated to the other units in 10 bit fields for x 
and y by omitting the bottom 3 bits (which are always 0).  Destination tiles are always 
aligned as indicated above, but source tiles can have any alignment.  The Pixel Address 
Unit uses a local 2D offset to generate non aligned tiles, but converts these into 1, 2 or 4 
aligned tile reads to memory, merges the results and passes them on to the Pixel Unit for 
processing. 
The triangle, antialiased triangles, lines, antialiased lines, points and 3D rectangles are all 
rasterized with basically the same algorithm, however antialiased points and 2D 
rectangles are treated as special cases. 
The DrawRectangle2D primitive is limited to rasterizing screen aligned rectangles but can 
rasterize tiles in any of four directions (left to right, right to left, top to bottom, bottom to 
top) so overlapping blit regions can be implemented.  The rasterization of the rectangle is 
further qualified by an operation field so a rectangle can sync on host data (for image 
download), or sync on bit masks (for monochrome expansion or glyph handling) in which 
case the tiles are output in linear scanline order.   
Each tile is visited multiple times, but with one row of fragments selected so that the host 
can present data in scanline order without any regard to the tile structure of the 
framebuffer.  The packed host data is unpacked and aligned and sent to the Pixel Unit 
before the Tile command.   
The host bitmask is aligned to the tile and row position and then forwarded to the Pixel 
Unit as a PixelMask before the Tile command, where it can be tested and used.  
Alternatively the bitmask can be anded with the Tile mask.  For image upload the tiles can 
also be visited in scanline order. 

                                                                   
2 This needs to vary depending on which is the top or right edge so that butting triangles don't write to a pixel twice. 
3 The aim is to have memory appear as a linear layout and do any patching during the read or write operation, but if this proves 
impossible without sacrificing performance then a single tiled layout will be used by everything and any changes needed for 
internal operation (such as for texture caching) will be done on the fly.  This will save having any units which read or write to 
memory from having to understand 4 different layout formats as in earlier chips.. 
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2.3.1 Rasterization Process 
The Rasterizer Unit handles arbitrary quad and triangle rasterization, antialias subpixel 
mask and coverage calculation, scissor operations and area stippling.  The rasterization 
process can be broken down into three parts: 

• Calculate the bounding box of the primitive and test this against the VisRect.  The 
VisRect defines the only pixels which are allowed to be touched.  In a dual P10 
system each P10 is assigned alternating super tiles (64x64 pixels) in a checker board 
pattern.  If the bounding box of the primitive is contained in the other P10's super tile 
the primitive is discarded at this stage. 

• Visiting the tiles which are interior to, or on the edge of a primitive while spending no 
time visiting tiles outside the primitive or in clipped out regions of the primitive which 
fall outside of the VisRect.  Extra sample points outside of the current tile being 
processed are used as 'out riggers' to assist in this.  One other area where care is 
needed is on thin slivers of primitives which fall between sample points and give a 
zero tile mask, thereby giving the impression the edge of a primitive has been found. 

• Computing the tile mask to show which fragments in the tile are inside the primitive.  
This also extends to calculating the coverage mask for antialiasing. 

There are 4 edge function generators so that arbitrary quads can be supported, although 
these will normally be screen aligned parallelograms or non screen aligned rectangles for 
aliased lines or antialiased lines respectively.  Screen aligned rectangles are used for 2D 
and 3D points.  Triangles only need to use 3 edge function generators.   
The edge functions will test which side of an edge the 64 sample positions in a tile lay and 
return an inside mask.  ANDing together the 3 or 4 inside masks will give a tile mask with 
the inside fragments of the primitive for this tile set.  Sample points which lie exactly on an 
edge need to be handled carefully so shared edges only touch a sample point once.   

The sample points are normally positioned at the centre of the pixels4, but when 
antialiasing up to 16 sample points are configured to lie within a pixel.  The 16 subpixel 
sample points are irregularly positioned (via a user programmable table) on a regular 8x8 
grid within the pixel so that any edge moving across a pixel will cover (or uncover) the 
sample points gradually and not 4 at a time.  This emulates stochastic (or jittered) 
sampling and gives better antialiasing results as, in general,  more intensity levels are 
used. 

2.3.2 Antialiasing 
Antialiasing is done by jittering the tile's position and generating a new tile mask.  The 
jittered tile masks are then accumulated to calculate a coverage value or coverage mask 
for each fragment position.  The number of times a tile is jittered can be varied to trade off 
antialiasing quality against speed.  Tiles which are totally inside the primitive are 
automatically marked with 100% coverage so these are processed at non antialising 
speeds.  This information is also passed to the Pixel Unit so it can implement a faster 
processing path for fully covered pixels. 
The UserScissor rectangle will optionally modify the tile mask if the tile intersects the 
scissor rectangle or delete a Tile message if it is outside of the scissor rectangle.  This, 
unlike the VisRect, does not influence which tiles are visited. 

                                                                   
4 D3D expects the sample point to be at the origin of the pixel and this is allowed for when the appropriate mode bit is set. 
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Finally the tile mask is optionally ANDed with the 8x8 area stipple mask extracted from the 
stipple mask table.  The stipple mask held in the table is always 32x32 and screen 
aligned5. 
The rasterizer computes the tile mask in a single cycle and this may seem excessively 
fast (and hence expensive) when the remainder of the core is usually taking, say 4…8 
cycles per tile.  The reasons for this apparent mismatch are: 

• To allow guard band clipping and scissoring to occur faster. 

• Searching for interior tiles when the start tile is outside the primitive (maybe due to 
guard band clipping) is wasted processing time and should be minimised. 

• To allow for some inefficiencies in tracking the primitive boundary where empty tiles 
outside the primitive are visited. 

• The antialiasing hardware uses the same 64 point sampler to calculate the 
subsamples values so could take up to 16 cycles to calculate each fragment's 
coverage. 

• It allows some simple operations to run much faster.  Examples of this are clearing 
a buffer, GID testing and early exit depth testing.   

Antialised points are processed in a different way as it is not possible to use the edge 
function generators without making them very expensive or converting the point to an 
polygon.  The method used it to calculate the distance from each subpixel sample point in 
the point's bounding box to the point's centre and compare this to the point's radius.  
Subpixel sample points with a distance greater than the radius do not contribute to a 
pixel's coverage.  The cost of this is kept low by only allowing small radius points hence 
the distance calculation6 is a small multiply and by taking a cycle per subpixel sample per 
pixel within the bounding box.  This will limit the performance on this primitive, however 
this is not a performance critical operation but does need to be supported as the software 
has no way to substitute alternative rendering commands due to polymode behaviour. 
 

2.4 Texture 
The texture subsystem is the largest and most complicated subsystem and will be further 
split up for this description. 
The main components of the texture subsystem are: 
• Texture Switch Unit 
• One or more Texture Pipes 
• Texture Arbiter Unit 
• Texture Address Unit 
• Texture Format Unit 
• Secondary Texture Cache 
• Texture Mux Unit 

                                                                   
5 This is much simpler than in earlier chips where different size stipple masks could be held and these masks could be aligned to 
window coordinates, screen coordinates and be mirrored and inverted.  Now it is software's responsibility to replicate the mask 
to 32x32 and to realign if the window moves (if necessary). 
6 Really distance squared to avoid the square root. 
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The Texture Switch Unit provides the interface for all the texture unit (except the 
Parameter Unit and the Shading Unit) to the message stream.  It will decode tags and, 
where necessary, cause the state in each the texture pipe to be updated. 
A texture pipe does all the colour and texture processing necessary for a single tile so the 
Texture Switch Unit distributes the Tile messages in round robin fashion to the active 
texture pipes.  Distributing the work in this fashion (as opposed to the alternative 
described in the footnote) probably takes more gates7, but does have the following 
advantages: 
 It allows the design to be more scalable and not limited to a power of two number of 

pipes. 
 The performance is not quantised as much when the number of textures is not an 

exact multiple or fraction of the number of pipes.  For example 3 textures would leave 
one pipe unused with the alternative scheme, whereas with this approach all pipes 
are kept at maximum throughput. 

 The number of texture pipes is transparent to the software and the Texture Switch 
Unit can avoid using texture pipes with manufacturing defects.  Obviously this will 
reduce performance but it does allow a device which would have otherwise been 
scrapped to be recovered and sold into a market where the drop in texture 
performance is acceptable.  This will improve the effective manufacturing yield. 

 The Texture Switch Unit is much simpler than would have been true with texture 
pipes working together with feedback from one pipe to the next. 

 Small primitive performance is improved because each pipe only sets up and 
processes the tiles (i.e. small primitives) given to it. 

 
Each texture pipe works autonomously and computes the filtered texture values for the 
valid fragments in the tile it has been given.  It will do this for up to eight sets of textures 
and pass the results to the Shader Unit in the pipe, and potentially back to the Texture 
Coordinate Unit for bump mapping.  Processing within the texture pipe is done as a 
mixture of SIMD units (Texture Coordinate Unit and Shading Unit) or one fragment at a 
time (Primary Texture Cache Unit and Texture Filter Unit) depending on how hard to 
parallelise the required operations.   
Each texture in a pipe can be trilinear filtered with per pixel LOD, cube mapped, bump 
mapped, anisotropic filtered and access 1D, 2D, or 3D maps.  The texture pipe will issue 
read requests to the Texture Arbiter when cache misses occur.  The texture pipe will be 
expanded on later. 
The Texture Arbiter collects texture read requests from the texture pipes, serialises them 
and forwards them onto the Texture Address Unit.  When the texture data is returned, 
after any necessary formatting, this unit will then route it to the requesting pipe.  Each pipe 
has pair of ports in each direction so that requests from different mip map levels can be 
grouped together8.  The arbitration between the texture pipes is done on a round robin 
basis. 

                                                                   
7 The 64 plane equations (8 texture coordinates and 8 colours) are duplicated as is the Parameter Setup Unit. 
8 This is probably not necessary now because all texture reads will come from a secondary level of cache so grouping requests 
from the same map together is probably not necessary (to get good memory efficiency) and reducing the number of ports may 
help layout etc.. 
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The Texture Address Unit calculates the address in memory where the texel data resides.  
This operation is shared by all texture pipes (to saves gates by not duplicating it), and in 
any case it only needs to calculate addresses as fast as the memory/secondary cache can 
service them.  The texture map to read is identified by a 3 bit texture ID, its coordinate (i, j, 
k), a map level and a cube face.  This together with local registers allow a memory 
address to be calculated.  This unit only works in logical addresses and the translation to 
physical addresses and handling any page faulting is done in the Memory Controller.  The 
layout of texture data in cube maps and mip map chains is now fully specified 
algorithmically so just the base address needs to be provided.  The maximum texture map 
size is 8Kx8K and they do not have to be square or a power of two in size9. 
Once the logical address has been calculated it is passed on to the Secondary Texture 
Cache Unit.  This unit will check if the texture tile is in the cache and if so will send the 
data to the Texture Format Unit.  If the texture tile is not present then it will issue a 
request to the Memory Pipe Unit and when the data arrives update the cache and then 
forward the data on.  The cache lines hold a 256 byte block of data and this would 
normally represent an 8x8 by 32bpp tile, but could be some other format (8 or 16 bpp, 
YUV or compressed).  The cache is 4 way set associative and holds 128 lines (i.e. for a 
total cache size of 32Kbytes), although this may change once some simulations have 
been done.  Cache coherence with the memory is not maintained and it is up to the 
programmer to invalidate the cache whenever textures in memory are edited.  The 
Secondary Texture Cache capitalises on the coherency between tiles or sub tiles when 
more than one texture is being accessed. 
The primary texture cache in the texture pipes always holds the texture data as 32bpp 4x4 
tiles so when the Texture Format Unit receives the raw texture data from the Texture 
Secondary Cache Unit it needs to convert it into this format before passing it on to the 
Texture Arbiter Unit.  As well as handling the normal 1, 2, 3 or 4 component textures held 
as 8, 16 or 32 bits it also does any YUV 422 conversions (to YUV 444) and expands the 
DX compressed texture formats.  Indexed textures are not handled directly but are 
converted to one of the texture formats when they are downloaded.  Border colours are 

                                                                   
9 Mip mapping requires a map size which is a power of two or has a border.  Cube maps are always square and each face always 
has the same size map (if present). 
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converted to a memory access as the border colour for a texture map is held in the 
memory location after the texture map. 
The Texture Mux Unit collects the fragment data for each tile from the various texture 
pipes and the message stream and multiplexes them to restore temporal ordering before 
passing them onto the Pixel Unit or Router respectively. 

2.4.1 Texture Pipe Components 
A Texture Pipe comprises six units: 
 Parameter Setup Unit  
 Texture Coordinate Unit 
 Texture Index Unit 
 Primary Texture Cache Unit 
 Texture Filter Unit 
 Shading Unit 

2.4.1.1 Parameter Setup 
The Parameter Setup Unit sets up the plane equations for the texture coordinates and 
colour values used in the Texture Coordinate Unit and Shading Unit respectively.  See 
earlier for details. 

2.4.1.2 Texture Coordinate 
The Texture Coordinate Unit computes one or more perspectively correct texture 
coordinates for each fragment and the appropriate level of detail (lod) when mip mapping. 
In addition the texture coordinates can be perturbed by an earlier texture access (bump 
mapping) or treated a the index into a cube (cube mapping). Higher qualities of filtering 
are supported by way of anisotropic mip mapping and high order filters (bicubic for 
example). Texture coordinates can have 1, 2 or 3 components to support 1D, 2D or 3D 
texture maps.  A fragment can have multiple texture maps applied to it and any 
combination of the above are allowed by the APIs. There is support for 8 simultaneous 
texture maps. 
The Texture Coordinate Unit is a programmable SIMD array  4x4 in size which runs a 
program once per sub-tile for those sub tiles with valid fragments.  All the texture 
calculations for a sub-tile are done before moving on to the next sub sub-tile. 
A SIMD architecture is used so these steps are carried out sequentially, but on multiple 
fragments at a time. If this 'program' takes n cycles to implement and the desired 
performance is to generate one set of texture coordinates per cycle then the SIMD array 
needs to hold n fragment processors. The value of n is constrained to be a power of two 
for ease of implementation and as will be seen later (in the section on programming) the 
above program takes about 14 cycles to run, hence n is ideally 16 processors. 
Plane equation evaluation, cube mapping coordinate selection, bump mapping 
transformation and coordinate perturbation, 3D texture generation, perspective division 
and level of detail calculation are all done by the program.  Anisotropic filtering loops 
through the program depending on the amount of filtering needed.  The integration of the 
different filter samples in the Shading Unit is controlled from here.  
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2.4.1.3 Texture Index Unit 
The final conversion to fixed point u, v, w coordinate includes an out-of-range test so the 
wrapping is all done in the Texture Index Unit. 
The Texture Index Unit takes the u, v, w, lod and cube face information from the Texture 
Coordinate Unit and converts it in to the texture indices (i, j, k) and interpolation 
coefficients depending on the filter and wrapping modes in operation.  Filtering across the 
edge of a cube map is handled by surrounding each face map with a border of texels 
taken from the butting face.  Texture indices are adjusted if a border is present.  The 
output of this unit is a record which identifies the 8 potential texels needed for the filtering, 
the associated interpolation coefficients, map levels and face number. 

2.4.1.4 Texture Cache 
The Primary Texture Cache Unit uses the output record from the Texture Index Unit to 
look up in the cache directory if the required texels are already in the cache and if so 
where.  Texels which are not in the cache are passed to the Texture Arbiter so they can 
be read from memory (or the secondary cache) and formatted.  The read texture data 
passes through this unit on the way to the Texture Filter Unit (where the data part of the 
cache is held) so the expedited loading can be monitored and the fragment delayed if the 
texels it requires are not present in the cache.  Expedited loading of the cache and FIFO 
buffering (between the cache lookup and dispatch operations) allows for the latency for a 
round trip to the secondary cache without any degradation in performance, however 
secondary cache misses cause stalls10.   
The primary cache is divided into two banks and each bank has 16 cache lines, each 
holding 16 texels in a 4x4 patch.  The search is fully associative and 8 queries per cycle (4 
in each bank) can be made.  The replacement policy is LRU, but only on the set of cache 
lines not referenced by the current fragment or fragments in the latency FIFO.  The banks 
are assigned so even mip map levels or 3D slices are in one bank while odd ones are in 
the other.   The search key is based on the texel's index and texture ID not address in 
memory (saves having to compute 8 addresses).  The cache coherency is only intended 
to work within a sub tile or maybe a tile and never between tiles.11  

2.4.1.5 Texture Filter Unit 
The Texture Filter Unit holds the data part of the primary texture cache in two banks and 
implements a trilinear lerp between the 8 texels simultaneously read from the cache.  The 
texel data is always in 32 bit colour format and there is no conversion or processing 
between the cache output and lerp tree.  The lerp tree is configured between the different 
filter types (nearest, linear, 1D, 2D and 3D) by forcing the 5 interpolation coefficients to be 
0.0, 1.0 or take their real value.  The filtered results are passed on to the Shading Unit 
and include the filtered texel colour, the fragment position (within the tile), a destination 
register and some handshaking flags.  The filtered texel colour can be feedback to the 
Texture Coordinate Unit for bump mapping or any other purpose. 

                                                                   
10 It is very likely that some texture access patterns (bilinear minification, for example) or simultaneous misses in all texture 
pipes will also cause some stalls.  The impact of these could be reduced by making the latency FIFO deeper. 
11 Recall that the tiles are distributed between pipes so it is very unlikely adjacent tiles will end up in the same texture pipe and 
hence Primary Texture Cache Unit. 
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2.4.1.6 Shader Unit 
The Shading Unit is a programmable SIMD machine operating on a logical 8x8 array of 
bytes (i.e. one per fragment position within a tile).  The physical implementation uses a 
4x4 array to save gate cost.  The Shading Unit is passed up to 8 tiles worth of texture 
data, has storage for 32 plane equations (an RGBA colour takes 4 plane equations) and 
32 byte constant values.  These values are combined under program control and passed 
to the Pixel Unit, via the Texture Mux Unit, for alpha blending, dithering, logical ops, etc.  
Fragments within a tile can be deleted so chroma keying or alpha testing is also possible.  
All synchronisation (i.e. with the texture data) is done automatically in hardware so the 
program doesn't need to worry where the texture data will come from or when it will turn 
up. 
Typically the Shading Unit program will do some combination of Gouraud shading, texture 
compositing and application, specular colour processing, alpha test, YUV conversion and 
fogging12. 
The Shading Unit's processing element is 8 bits wide so takes multiple cycles to process a 
full colour.  The ALU has add, subtract, multiply, lerp and a range of logical operations.  It 
does not have divide or inverse square root operations.  Saturation arithmetic is also 
supported and multi byte arithmetic can be done.  Programs are limited to 128 instructions 
and conditionals jumps and subroutines are supported.  The arrival of a Tile message 
initiates the execution of a program and a watchdog timer prevents lockups due to an 
erroneous program. 
In order to support some of the more complex operations such as high order filtering, 
convolution and go beyond 8 textures per fragment several programs can be run on the 
same sub tile, with different input data before the final fragment colour is produced.  This 
multi pass operation is controlled by the Texture Coordinate Unit.  This works in a very 
similar way as the multi pass operation of the Pixel Unit. 

 

2.5 Framebuffer 
The Framebuffer subsystem is responsible for combining the colour calculated in the 
Shading Unit with the colour information read from the framebuffer and writing the result 
back to the framebuffer.  Its simplest level of processing is therefore antialiasing 
coverage, alpha blending, dithering, chroma keying and logical operations, but the same 
hardware can also be used for doing accumulation buffer operations, multi buffer 
operations, convolution and T buffer antialiasing.  This is also the main focus for 2D 
operations with most of the other units (except the rasterizer) being quiescent, except 
perhaps for some of the esoteric 2D operations such as anisotropically filtered perspective 
text. 

 

2.6 Local Buffer 
See Localbuffer in the Miranda P10 Programmer’s Guide volume I. 

 

                                                                   
12 Table based fog is implemented as a 1D texture as it is too expensive to allow each fragment access to an internal look up 
table. 
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2.7 Memory Pipe 
P10 memory is cache-based and all data types are stored as 8bpp planar tiles.  All 
memory access is logical/virtual and page faults cause CPU-like page swaps. 
Memory is  preferably 256 bit wide DDR devices running at 266MHz.  From 32MB to 
256MB of x32 devices are supported, or alternatively up to 512MB of x16 devices.13   
SDR devices are not supported. 
There are two independent 128bit controllers which hold alternating groups of 8 tiles.  
Memory is divided into 4 regions corresponding to the 4 internal banks of a DDR device: 

 

Bank Controller 0 Controller 1 
0 0-7 8-15 
1 16-23 24-31 
2 32-39 40-47 
3 48-55 56-63 
0 64-71 72-79 

 
Local memory is used to store color, depth, stencil, and texture data. These are largely 
interchangeable depending on the microcode application context.  For more information 
on data typing and usage refer to the Miranda P10 Programmers Guide.   
For more information on Memory devices and layouts see “Memory Systems” in the 
Miranda P10 Reference Guide. 

 

2.8 AGP/PCI Interface  

2.8.1 PCI Interface 

2.8.1.1 PCI Target features 
 PCI Config Space transactions 
 PCI Memory Space transactions 
 PCI Fast Writes (2X and 4X) 
 PCI I/O Space transactions 
 VGA palette write snooping 
 32-bit and 64-bit addressing (dual address cycles) 
 PCI multi-function operation 

2.8.1.2 PCI Master features 
 PCI Memory Space transactions 
 32-bit read and write data transfers 
 32-bit and 64-bit addressing (dual address cycles) 

                                                                   
13 The additional address lines will somewhat constrain performance with x16 memories. 



 Miranda P10 Reference Guide Volume I  Layout   

3D labs Proprietary and Confidential  2-13 

2.8.2 AGPBus 

AGP 4X is Intel’s high performance, component level interconnect targeted at 3D display 
applications, which uses a 66MHz PCI specification as an operation baseline and provides 
significant performance extensions to the PCI specification. 
Implementing these features enables P10 to achieve better than 1 GByte per second 
bandwidth from the host for instructions, textures, video data (limited by the host system 
throughput). 
The add-in slot defined for AGP uses a connector body which is not compatible with the 
PCI connector.  Boards designed for use in an AGP slot are not mechanically 
interchangeable with PCI boards.  P10 supports AGP2x, AGP4x and PCI at signal 
voltages from 1.5vdc to 3.3vdc only.  Legacy 5vdc PCI logic may severely damage the 
chip. 

2.8.2.1 AGP Master features 
 AGP low-priority Read transactions 
 AGP low-priority Write transactions 
 AGP Fence and Flush transactions 
 Operation at 1X, 2X, and 4X data rates 
 Sideband and pipe operation 
 48-bit addressing using sideband  
 64-bit addressing using pipe and dual address cycles 

2.8.3 SVGA 
The on-chip SVGA unit is register level compatible with standard VGA devices and 
requires no software emulation. It natively supports all standard VGA modes and certain 
VESA VBE extended modes.  
The following standard VESA VBE extended video modes are supported - those not 
supportable by the SVGA unit may be supported using the Graphics Processor: 
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Table  1- 2 VESA VBE Graphics Modes 

Mode  
(hex) 

Pixels Colors Window-
ed 

Lin-
ear 

Support-
able in 
SVGA 

Support-
able in 
GP 

0x100 640x400 256 3  3  3  3  
0x101 640x480 256 3  3  3  3  
0x103 800x600 256 3  3  5 3  
0x105 1024x768 256 3  3  5 3  
0x107 1280x1024 256 3  3  5 3  
0x109 320x200 32K (5:5:5:1) 3  3  5 3  
0x10D 320x200 64K (5:6:5) 3  3  5 3  
0x10F 320x200 16.8M (8:8:8) 3  3  5 3  
0x110 640x480 32K (5:5:5:1) 3  3  5 3  
0x111 640x480 64K (5:6:5) 3  3  5 3  
0x112 640x480 16.8M (8:8:8) 3  3  5 3  
0x113 800x600 32K (5:5:5:1) 3  3  5 3  
0x114 800x600 64K (5:6:5) 3  3  5 3  
0x115 800x600 16.8M (8:8:8) 3  3  5 3  
0x116 1024x768 32K (5:5:5:1) 3  3  5 3  
0x117 1024x768 64K (5:6:5) 3  3  5 3  
0x118 1024x768 16.8M (8:8:8) 3  3  5 3  
0x119 1280x1024 32K (5:5:5:1) 3  3  5 3  
0x11A 1280x1024 64K (5:6:5) 3  3  5 3  
0x11B 1280x1024 16.8M (8:8:8) 3  3  5 3  

The following VESA VBE text modes are supportable in the SVGA: 

Table  1- 3  VESA VBE Text Modes 
Mode (hex) Characters 

(col/row) 
0x108 80x60 
0x109 132x25 
0x10A 132x43 
0x10B 132x50 
0x10C 132x60 

 
P10 allows VESA bankswitching to be done through the bypass to enable additional VESA 
mode support.   ModeX is RAMDAC.  P10 incorporates high performance 350MHz 
RAMDAC.  Typical screen resolutions up to 1600x1200 are supported with refresh rates of 
96Hz or 1920x1080 with refresh rates of 90Hz, or 2048x1536 at 60Hz.  It supports packed 
pixel formats, with color depths of 8, 16, 24, 32 and 40 bits per pixel.  It has 4 dot-clock 
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phase locked loops (PLLs) and triple 10-bit D/A converters. The RAMDAC contains a  
64x64x2 bit cursor array to support a 2, 4, or 16 color hardware cursor with cursor shapes 
cache. 

2.8.4 Video Overlay 
The video overlay is used to display incoming video data on screen.  The overlay selection 
is based on a transparent color, the overlay key, which can be any RGB color or alpha 
value.  Optionally, the overlay can be blended with the main image by using a 2-bit blend 
factor.  A filter process supports zooming and shrinking at any rate.  It combines four 
pixels into one by using bilinear filtering to achieve best results.  Furthermore the filtered 
output is optionally converted from YUV to RGB color space format. 

2.9 DMA 
P10 supports a comprehensive set of DMA engines and uses Circular buffer input stream 
handling to reduce Command DMA setup overhead and latencies.  Input streams can be 
from host or on-card memory with two levels of nesting.  Output DMA returns data to host 
or local memory, performs image uploads and state return.  

2.9.1 Graphics Core to Graphics I/O – Upload Controller 
The GPIO Upload DMA Unit – GPIOUD – uploads message data from the graphics 
pipeline to the PCI and AGP bus masters. 
The unit is controlled by PCI slave register writes and reads, which are resynchronised 
from P clock to K clock and back through the PCI slave write (PciGpWr) and PCI slave 
read (GpPciRd) FIFOs respectively. 
The GP input half of the unit maintains 2 input message ports and 16+1 circular buffers. 
These generate outgoing message streams on the API and Isochronous output message 
FIFOs. 
The GP output half of the unit maintains an output message port and a Sync interrupt 
signal. These are driven from the incoming message stream on the input message FIFO. 

• Autonomous - set-up/fetch parallelism 
• No wait state - maximum transfer rate 
• Programmable block size - large DMA buffers 
• Separate DMA controllers for upload and download can run concurrently 

2.9.2 Graphics I/O to Geometry and Rasterizer – GPIO Command DMA 
The GPIO Command DMA Unit issues DMA requests and processes the return data for 
GP command packets. These are inserted into the message stream.  DMA packets are 
usually submitted via circular buffers which manage the GP core command interface. 
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2.9.3 Circular Buffers 
Apart from the input message port, the circular buffer provides the only command 
interface to the GP core. They replace the GP Input FIFO and command DMA schemes of 
earlier chips. 
The intention is that 16 user contexts (Api) and the GDI+ driver (Iso) each have their own 
private circular buffer backed by a DMA engine.14   Wraparound is handled automatically 
by the GPIO Bus Interface. 
 

 
Figure 2.5  Graphics Processor I/O 

                                                                   
14  A “user context” here is considered to be the display driver, an OpenGL ICD process, or anything else wanting to make use 
of the GP core for 2D or 3D rendering.  
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2.9.4 Interrupt Controller 
• End-of-DMA - allows DMA chaining 
• VSYNC - efficient double buffering 
• Scanline - special effects 
• Texture invalid 
• Bypass DMA interrupt 
• I2C start condition - alert host to start of I2C transfer 
• Sync - indicates graphics core is idle 
• Error - e.g. writing to a full FIFO 

2.9.5 Video Streaming 
P10 supports digital video output.  The 24-bit streamed output is designed to work with 
common PAL/NTSC encoders and flat panel controllers. 

2.9.6 ROM support 
P10 supports a Flash ROM.  The ROM stores code needed for device-specific 
initialization and the SVGA BIOS.  For more information see the P10 Reference Guide, 
volume 4, “Reset”. 
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3  
3 A ddre s s  M a ps  a nd R e gions  

3.1 PCI Configuration Region 
The PCI Configuration Space is intended to provide an appropriate set of configuration 
‘hooks’ which satisfy the needs of current and anticipated system configuration 
mechanisms. The registers in this 256-byte space are accessed and modified by the use 
of PCI Configuration Read and Write commands, and are normally initialised by BIOS or 
similar low-level code at system power-up and reset. The configuration registers are 
described in detail in P10 Reference Guide volume II. 
When configured for multi-function operation the bus interface provides a unique 256-byte 
configuration space for each PCI function, but will map accesses to other regions to the 
same underlying hardware regardless of the function being addressed.  

3.1.1 Control Registers 
Region Zero is a 256 KByte region containing control registers, and ports to and from the 
graphics processor. The control space is mapped twice within the 256 KByte region. In the 
second 128K the registers are mapped to be byte swappable for big endian hosts. See 
Section 3 of this document for further details of Region Zero. 

3.1.2 Memory Apertures 
Two separate apertures are provided to allow access to local memory. Each has a 
programmable size, and can be disabled if required. 
As well as being used to access local memory, these two apertures can also be 
programmed to allow reading and writing of the Expansion ROM. This ensures that the 
“ROM” is visible beyond system boot time, allowing an EEPROM device to be 
reprogrammed in the field. Finally, either aperture can be programmed to forward memory 
accesses to the VGA memory controller. 

3.1.3 Expansion ROM 
In earlier 3Dlabs bus interface designs a number of parameters for the bus interface were 
initialised at reset time using pull-up or pull-down resistors connected to configuration 
pins. These pins were normally tri-state at reset, and their state was sampled on the 
trailing edge of reset. These configuration signals were then loaded into the ChipConfig 
register, which was used to control the initialisation and operation of the device.  
This approach becomes less practical as external signal speeds increase, and so the 
current design loads all but the most critical initialisation information from the external 
Expansion ROM.  Loading from the ROM is enabled using a single “RomConfig” 
configuration pin, and default initialisation values are used for registers when loading is 
disabled. 
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Once the Configuration Table pointer has been read a sequence of 32-bit words are 
loaded from the table into configuration space registers in the PCI Config unit and control 
registers in the ROM Controller unit: 

 

Table 
Offset 

Table Field Destination Unit Destination Register 

00h BusConfig PCI Config CFGBusConfig 
04h FunConfig PCI Config CFGFunConfig 
08h Subsystem PCI Config CFGSubsystemID and CFGSubsystemVendorID 
0Ch DevConfig PCI Config CFGDevConfig 
10h DevConfigMask PCI Config CFGDevConfigMask 
14h RomTiming ROM Controller ROMTiming 

 
The CFGBusConfig, CFGFunConfig, CFGDevConfig, and CFGDevConfigMask 
registers are described below. Each of these four user-defined registers is shared 
between all functions in a multi-function device, and accesses through any function are 
mapped to the same underlying register hardware by the bus interface. 

3.1.4 VGA Addresses 
The bus interface can be configured to respond to standard VGA-compatible Memory and 
I/O Space addresses (memory addresses 0xA0000 through 0xBFFFF, and various I/O 
addresses in the ranges 0x3B0 through 0x3BB and 0x3C0 through 0x3DF). Further details 
are given in Section 4 of this document (“Video and RAMDAC”). 
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BIST Header Type Latency Timer Cache Line Size 

Revision ID Class Code 

Status Command 

Device ID Vendor ID 

Subsystem ID Subsystem Vendor ID 

CardBus CIS Pointer 

Base Address Registers 

Expansion ROM Base Address 

Reserved Capabilities Ptr 

Reserved 

Max_Lat Min_Gnt Interrupt Pin Interrupt Line 

00h 

04h 

08h 

0Ch 

10h 

14h 

18h 

1Ch 

20h 

24h 

28h 

2Ch 

30h 

34h 

38h 

3Ch 

31                                24                                     16                                         8                                        0 

 
 
Table 3.1  Predefined and Base Address Registers  (offsets 00h to 3Fh) 
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40h 

44h 

48h 

4Ch 

50h 

54h 

 

E0h 

E4h 

E8h 

ECh 

F0h 

F4h 

F8h 

FCh 

31                                24                                     16                                         8                                        0 

Reserved AGP Revision AGP Next Ptr AGP Capability ID 

AGP Status 

AGP Command 

PM Capability ID PM Next Ptr PM Capabilities 

PM_BSE PM Data PM Control/Status 

DevConfig 

BusConfig 

DevConfigMask 

Indirect Data 

Indirect Address 

Reserved 

Indirect Trigger 

FunConfig 

 
Table 3.2  AGP, Power Management, and User-Defined Registers  (offsets 40h to FFh) 
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3.2 Region Zero Address Map 
Region Zero is a 256 KByte region containing control registers and ports to and from the 
graphics processor. The control space is mapped twice within the 256 KByte region. In the 
second 128K the registers are mapped  as byte swapped for big endian hosts. 

 
Region Zero Address Map 

Address Range Size (bytes) Sub-Region Select Byte Swap 
0x00000 – 0x00FFF 4 K Bus Interface CSR No 
0x01000 – 0x01FFF 4 K Interrupt Control No 
0x02000 – 0x02FFF 4 K Video Head 0 Control No 
0x03000 – 0x03FFF 4 K Memory Control No 
0x04000 – 0x04FFF 4 K VGA Control No 
0x05000 – 0x05FFF 4 K ROM Control No 
0x06000 – 0x06FFF 4 K Bypass Control No 
0x07000 – 0x07FFF 4K Video Port Control No 
0x08000 – 0x08FFF 4K Video Head 1 Control No 
0x09000 – 0x0EFFF 24 K reserved n/a 
0x0F000 – 0x0FFFF 4 K GPIO Driver Registers No 
0x10000 – 0x1FFFF 64 K GPIO “User” Registers No 
0x20000 – 0x20FFF 4 K Bus Interface CSR Yes 
0x21000 – 0x21FFF 4 K Interrupt Control Yes 
0x22000 – 0x22FFF 4 K Video Head 0 Control Yes 
0x23000 – 0x23FFF 4 K Memory Control Yes 
0x24000 – 0x24FFF 4 K VGA Control Yes 
0x25000 – 0x25FFF 4 K ROM Control Yes 
0x26000 – 0x26FFF 4 K Bypass Control Yes 
0x27000 – 0x27FFF 4K Video Port Control Yes 
0x28000 – 0x28FFF 4K Video Head 1 Control Yes 
0x29000 – 0x2EFFF 24 K reserved n/a 
0x2F000 – 0x2FFFF 4 K GPIO Driver Registers Yes 
0x30000 – 0x3FFFF 64 K GPIO “User” Registers Yes 

 Table  3.3  Region Zero Address Map 

3.2.1 Reserved Registers 
All accesses to reserved sub-regions in the table above are intercepted and handled by 
the bus interface: writes are discarded, and reads return zero. Accesses to non-reserved 
sections of the address map are forwarded to the appropriate target unit. The bus 
interface has no information about the internal register map of individual target units, so 
where target units have a sparse register map they themselves are responsible for 
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handling accesses to reserved registers. By convention, they too should absorb writes 
and read back zero from reserved addresses. 

3.2.2 PCI Address Regions 
The PCI Slave interface implements six PCI Address Regions, shown in the table below. 
The standard VGA compatible Memory and I/O Space addresses are decoded when the 
device has been suitably configured. These addresses do not form a single contiguous 
region but are mentioned in the table for completeness: 

 

PCI Address Regions 
Region Address Space Size (bytes) Description Comments 

Config Configuration 256 PCI Configuration PCI Special 
Zero Memory 256 K Control Registers relocatable 
One Memory configured Memory Aperture One relocatable 
Two Memory configured Memory Aperture Two relocatable 
ROM Memory 64 K Expansion ROM relocatable 
VGA Memory & I/O - VGA Address optional & fixed 

Table  3.4  PCI Address Regions 
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4  
4 Vide o a nd R A M DA C  

 
P10 Video displays data held in memory. It generates the video timing, requests data from 
memory, formats the data returned,and prepares it for display. There are four indpendent 
channels that can each request data; they are normally used for the underlay, the main 
image, the overlay, and the cursor. The four channels are combined to form a single 
channel by applying color key and blend operations. The result is passed through two 
lookup tables one after the other before being sent to a display device such as DAC or a 
TV encoder. 

 

Address
Generator

Format

Format

Format

Timing

LookU
pZ

ero

DAC

TMDS

TV

Memory
Controller

Underlay

Main

Overlay

LookU
pO

ne

D
isplay

Background or composite

Pixel Processor Lookup

VGA

Key

Composite

Format Cursor

C
hannel

 
All channels are identical except that they have a fixed stacking order (cursor over overlay 
over main over underlay) and the main and overlay channels can be run in stereo mode. 

4.1 LUTs 
There are two lookup tables to remap the pixel color. Typical uses include: 
 using one table to dereference index data while another gamma corrects RGB data 
 supporting two different gammas (perhaps one for video and another for 3D). 
Each channel selects which LUTs to use from a bitfield in a register; each channel can 
use one or both LUTs. Alternatively the LUT may be selected from the upper 2 bits of the 
alpha component, again as a bit field indicating one or both LUTs. 
If a LUT is in index mode, as opposed to RGB mode, it uses one channel to index all 3 
components; the channel to use can be selected. 

 
 

4.2 Display Resolutions 
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TBD 

4.3 Display Data Channels 
P10 supports both analogue and digital I/O.  Digital input channels include an I2C bus  

4.4 Analogue Display Timing Parameters 
All timing values are relative to the first clock of vertical blank (i.e. the first pixel in vertical 
blank is at zero horizontal and 0 vertical). The horizontal values are defined in pixels and 
the vertical value in lines. The base address of the frame buffer is the first pixel to be 
displayed. Addresses must be aligned to the nearest tile and offsets with the tile specified 
through the pan regsiter. The screen stride may be different to the screen width. 
The values loaded into registers represent the pixel (or line) on which the event takes 
place, so the horizontal blank end register holds the last pixel of blank; as the count is 
from zero, the number in the register is length of the horizontal blank. 

(0,0)

H Blank

V
Blank

H
Sync

V
Sync

H Sync Start
H Sync End

H Blank End

V Sync Start

V Sync End

V Blank End

Active Video

First active pixel = base address

H Total

V Total

(0,0)

H Blank

V
Blank

H
Sync

V
Sync

H Sync Start
H Sync End

H Blank End

V Sync Start

V Sync End

V Blank End

Active Video

First active pixel = base address

H Total

V Total

 
There is an implementation requriement that the horizontal total value be no less than 4 
and that there must be at least one line of vertical blank. 
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4.4.1 Synchronization 
There are two lock bits which may be used to synchronize different channels within a 
head, or different heads. The lock registers hold a mask of which channels take part in the 
lock; there are two lock registers per head. 
The locking operation uses an open-drain pin which is pulled high by a resistor. When a 
channel is not ready to synchronize it pulls the pin low, so when the pin is sampled it 
returns ‘not locked.’ When a channel is ready to synchronize it tri-states the pin, and when 
all channels have tri-stated the pin is pulled high and returns ‘locked.’ 
All heads have access to all lock pins so they can be used to synchronize two heads in 
the same chip; the pins can also be shared by separate chips. 
Note: Synchronization, PLL setup and Genlocking are described in more detail in 

the P10 Programmer’s Guide Chapter 6 – Synchronization – and section 
5.6.3, Dual Head Video Oputput.  .Sync on Green is not supported on P10 

4.4.2 Multi-Head 
There is one PClk process that holds all registers for all heads; most registers are unique 
to the head they control, some are shared by all heads. The DClk processes are repeated 
for each head in the system. 

4.5 Digital Display Timing Parameters 
VIP2 DTV display formats are specified by the position of the SAV and EAV. These in turn 
identify the task, field, and blanking intervals. 
In the VPU, horizontal samples are counted from 0 at the start of the horizontal blanking 
interval, and the first line of the frame is the first line of the vertical blanking interval. In 
interlaced video, with two vertical blanking intervals, the start field is also specified. 
For example, this is how the 525-line System is formatted for the VPU: 
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Refer to the P10 Programmer’s Guide for more information. 

4.6 Multi-rasterizer and Genlock 
Refer to the Miranda P10 Programmer’s Guide for details of multi-rasterizer and Genlock 
implementation and use. 
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