

P10
Programmer’s Guide

DRAFT

PROPRIETARY AND CONFIDENTIAL INFORMATION

®

3Dlabs®

P10
Programmers Guide

PROPRIETARY AND CONFIDENTIAL INFORMATION

®

Issue 1

Front Matter Miranda P10 Programmers Guide

ii Proprietary and Confidential 3Dlabs

Miranda P10 Programmers Guide Front Matter

Proprietary Notice
The material in this document is the intellectual property of 3Dlabs®. It is provided solely
for information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3Dlabs accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice. 3Dlabs may not
produce printed versions of each issue of this document. The latest version will be
available from the 3Dlabs web site.

3Dlabs products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.
3Dlabs ® is the worldwide trading name of 3Dlabs Inc. Ltd.

3Dlabs, GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or
registered trademarks of 3Dlabs Ltd., 3Dlabs Inc. Ltd or 3Dlabs Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of
Microsoft Corp. in the United States and/or other countries. OpenGL is a registered
trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and
recognized.

© Copyright 3Dlabs Inc. Ltd. 2001. All rights reserved worldwide.

Email: info@3dlabs.com

Web: http://www.3dlabs.com

3Dlabs Ltd.
Meadlake Place

Thorpe Lea Road, Egham
Surrey, TW20 8HE

United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3Dlabs K.K.
Shiroyama JT Mori Bldg 16F

40301 Toranomon
Minato-ku, Tokyo, 105, Japan

Tel: +81-3-5403-4653
Fax: +91-3-5403-4646

3Dlabs Inc.
480 Potrero Avenue

Sunnyvale, CA 94086,
United States

Tel: +1 (408) 530-4700
Fax: +1 (408) 530-4701

Front Matter Miranda P10 Programmers Guide

iv Proprietary and Confidential 3Dlabs

Change History

Document Issue Date Change

174.1.4 01 1 25/06/2001 Creation

174.1.4 02 2 17/10/2001 Final edit and release

Miranda P10 Programmers Guide Front Matter

Table of Contents
1 INTRODUCTION ... 1-1

1.1 Introduction ... 1-1
1.2 How to Use This Manual... 1-1
1.3 Further Reading... 1-2

2 MEMORY .. 2-1
2.1 Data Formats ... 2-1
2.1.1 Local Memory Data Format ... 2-1
2.1.2 Bypass Accesses .. 2-3
2.1.3 GPIO Data Format .. 2-4
2.1.4 Re-circulating Data ... 2-4

2.2 Memory Management Introduction .. 2-4
2.2.1 Advantages and Disadvantages of Virtual Memory 2-5

2.3 Address Translation Without Page Faulting ... 2-5
2.3.1 Address Translation Initialisation .. 2-5

2.4 Memory Management With Page Faulting ... 2-9
2.4.1 Page Table Format Revisited .. 2-9
2.4.2 DMA Controller ... 2-10
2.4.3 Page Replacement Algorithms ... 2-13

3 INPUT AND OUTPUT .. 3-1
3.1 Where to store commands and data .. 3-1
3.1.1 Host memory .. 3-1

3.2 Programed I/O vs. DMA .. 3-2
3.2.1 The Input Message Port .. 3-3
3.2.2 The DMA Interface .. 3-3

3.3 Circular DMA Buffers .. 3-4
3.3.1 Layout, Read/Write Pointers and Scheduling - Software Implementation: 3-
4

3.4 DMA 3-6
3.5 Dual Command Streams .. 3-6
3.5.1 DMA stream.. 3-6
3.5.2 Vertex and Index Data Stream... 3-7

Front Matter Miranda P10 Programmers Guide

vi Proprietary and Confidential 3Dlabs

3.5.3 Output DMA ... 3-7
3.6 Multiple Contexts ... 3-7
3.6.1 Context Switching .. 3-7
3.6.2 User-induced and Isochronous Switches .. 3-8
3.6.3 Context Scheduling .. 3-8
3.6.4 Driver Controlled Scheduling: .. 3-8
3.6.5 Context Security ... 3-9

3.7 Vertex and Index Buffers (GPIO) .. 3-10
3.7.1 Organizing data in memory ... 3-10
3.7.2 Caching ... 3-11
3.7.3 Preparing to Draw Primitives .. 3-11
3.7.4 Drawing Primitives ... 3-12

3.8 Downloading Textures .. 3-13
3.9 DXVA Driver ... 3-13
3.10 Video Port ... 3-13
3.10.1 Video Stream Formats.. 3-14
3.10.2 SAV and EAV Timing Reference Signals .. 3-15
3.10.3 DTV Display Formats ... 3-15
3.10.4 Fields and Frame.. 3-17
3.10.5 Frames and Memory .. 3-17
3.10.6 Frame Interrupts .. 3-18
3.10.7 Programming Summary ... 3-18
3.10.8 Programming Example .. 3-18
3.10.9 Register Interface ... 3-21

3.11 Upload Facilities ... 3-23
4 PROGRAMMING OVERVIEW .. 4-1

4.1 Transformation and Lighting ... 4-1
4.1.1 GPIO .. 4-1
4.1.2 Vertex Shading Unit ... 4-1

4.2 Texture and Rendering .. 4-2
4.2.1 Texture Coordinate Programme ... 4-2
4.2.2 Shading ... 4-3

Miranda P10 Programmers Guide Front Matter

4.2.3 Framebuffer Processing ... 4-3
4.2.4 How to draw a Gouraud-shaded triangle ... 4-4

4.3 Fixed mode and state registers .. 4-4
4.4 Programmable Units ... 4-4
4.4.1 Data flows among units ... 4-4
4.4.2 Vertex Shading Introduction.. 4-4
4.4.3 Texture Co-ordinate Unit (Introduction) ... 4-12
4.4.4 Introduction to Shading ... 4-32

5 INITIALIZATION .. 5-1
5.1 Memory Allocation (typical positions for LB, FB).. 5-1
5.2 Page Tables .. 5-1
5.3 Context Record ... 5-1
5.4 Registers.. 5-1
5.5 Programs .. 5-1
5.5.1 Program Initialization .. 5-1
5.5.2 Specifying program start addresses .. 5-2
5.5.3 Downloading programs .. 5-2
5.5.4 Downloading pixel address unit programs ... 5-3
5.5.5 Downloading other unit programs ... 5-3
5.5.6 Setting program start addresses for tile programs 5-3
5.5.7 Running programs .. 5-4

5.6 Video Output... 5-4
5.6.1 Programming the Video Mode, RAMDAC and LUTs 5-4
5.6.2 Using Video Scaling .. 5-6
5.6.3 Dual Head Video Output ... 5-7
5.6.4 Digital Video Output .. 5-8

6 SYNCHRONIZATION... 6-1
6.1 Synchronization with Core and with VTG... 6-1
6.1.1 Synchronizing Video Channel Updates with Video Output 6-1
6.1.2 VideoUpdate.MainBuffer .. 6-1
6.1.3 VideoUpdate.MainReg ... 6-1
6.1.4 Synchronizing the Core with Video Output .. 6-1

Front Matter Miranda P10 Programmers Guide

viii Proprietary and Confidential 3Dlabs

6.2 Invalidating Caches .. 6-2
6.2.1 Texture Cache Control ... 6-2
6.2.2 Pixel and Local Buffer Cache Control .. 6-2

6.3 Interrupts ... 6-2
6.3.1 Interrupts & Synchronization .. 6-2

7 IMAGE DOWNLOAD (HOW TO, SETUP) .. 7-1
7.1 Pixel Data... 7-1
7.1.1 Native download setup ... 7-1
7.1.2 Native download operation ... 7-2
7.1.3 Translating downloads ... 7-3
7.1.4 Palettised translating downloads .. 7-4
7.1.5 Downloads with patterned brushes ... 7-7

7.2 Texture maps (download, MIPmap generation) ... 7-7
7.3 Bitmask data .. 7-10
7.3.1 Opaque Monochrome Bitmap Downloads .. 7-10
7.3.2 Rendering Host Memory Font Glyphs/Transparent Downloads 7-12
7.3.3 Font Glyph Downloads To Offscreen Cache ... 7-12

7.4 Performing uploads .. 7-13
7.4.1 Upload setup .. 7-13
7.4.2 Upload operation.. 7-14
7.4.3 Monochrome uploads .. 7-14

8 RENDERING .. 8-1
8.1 Program-to-program parameter consistency ... 8-1
8.2 Selecting the primitive type for the vertex stream target (triangles, polymode, 2D
rectangles/clears) ... 8-1
8.3 Vertex Processing ... 8-1
8.3.1 Transformation .. 8-2
8.3.2 Texture Operation .. 8-4
8.3.3 Fog .. 8-5
8.3.4 Lighting .. 8-6
8.3.5 User Clip Planes ... 8-12
8.3.6 Projection and Viewport Mapping ... 8-12

Miranda P10 Programmers Guide Front Matter

8.4 Shading (Gouraud, flat, modulate etc.) .. 8-13
8.4.1 Flat Shading ... 8-14
8.4.2 Gouraud Shading (Diffuse and Specular) .. 8-16
8.4.3 Texture Based Shading .. 8-17

8.5 Texturing .. 8-18
8.5.1 Texture co-ordinate generation (1D, 2D, 3D; sharing the work on
multiple co-ordinate sets) ... 8-18
8.5.2 Colour Lookup .. 8-21
8.5.3 Bump Environment Mapping... 8-22
8.5.4 Cube Mapping .. 8-25

8.6 Localbuffer processing (setting up the mode registers) .. 8-29
8.7 Framebuffer processing (Dithering, Logical Ops, Blending, Accumulation buffers/deep
buffers) 8-32
8.7.1 Configuring the Frame Buffers .. 8-32
8.7.2 Loading the Pixel Unit and Pixel Address Unit Programs.................... 8-34
8.7.3 Blending ... 8-36
8.7.4 Dithering... 8-39
8.7.5 Accumulation Buffers.. 8-40

8.8 2D Operations (blits, pattern fills, fonts, pixel depth conversions, 2D logic ops.) 8-43
8.8.1 Simple Solid Color Operations .. 8-43
8.8.2 Color Pattern Operations .. 8-45
8.8.3 Monochrome Pattern Fills ... 8-47
8.8.4 Screen To Screen Copies (BitBlt) .. 8-48
8.8.5 Text Font Rendering ... 8-51
8.8.6 Bitmap Depth Conversion ... 8-53

8.9 Video Operations and the DXVA Driver .. 8-54
8.9.1 Video scaling (replication and pixel dropping) ... 8-54
8.9.2 Using the Isochronous channel for video overlays 8-54
8.9.3 Probe & Locking .. 8-54
8.9.4 Main Function Loop .. 8-55
8.9.5 Implementation .. 8-57
8.9.6 Summary .. 8-79

Front Matter Miranda P10 Programmers Guide

x Proprietary and Confidential 3Dlabs

9 ANTIALIASING .. 9-1
9.1 Sample point position (how many sample points).. 9-1
9.2 OpenGL Antialiasing (triangles, dual line patterns, points)... 9-3
9.3 Full Scene AA (FSAA, Multi sampling, Super sampling) ... 9-4

10 EXOTICA ... 10-1
10.1 Beyond ordinary graphics functions (imagination, examples)... 10-1
10.2 Vertex Shader applications ... 10-1
10.2.1 Tessellation ... 10-1
10.2.2 Displacement Mapping .. 10-3

10.3 Texture Co-ordinate applications .. 10-6
10.3.1 Convolution.. 10-6
10.3.2 High Order or Multi-tap Filters ... 10-7
10.3.3 Ray Casting ... 10-9
10.3.4 Bump Mapping ... 10-10

10.4 Pixel applications .. 10-12
11 GLOSSARY & INDEX .. 11-1

Miranda P10 Programmers Guide Introduction

3Dlabs Proprietary and Confidential 1-1

1
1 Introduction

1.1 Introduction
The Miranda P10 Graphics Processor is the first of a radical new chipset series with a
highly scalable, multi-texture/multi-fragment per clock cycle architecture. This industry-
leading design uses extensive parallelism and programmability to provide future-proof
support for new, texture-intensive APIs such as Microsoft DX8.
Using programmable T&L and programmable pixel shaders in conjunction with highly
optimised fixed-function units results in a simpler, faster and more flexible design.
Programmable registers also allow dynamic reconfiguration of the number of vertex
shaders, the number of texture pipes and the number of rasterizers per chip to deliver the
greatest possible throughput under changing task conditions.
Fixed-function registers for specialised tasks have been optimised for simplicity and speed
with hand-polished main routines and the removal of legacy code. Memory bandwidth and
DMA performance have been enhanced with support for high-density DDR memory
configurations up to 8 x 8Mx32 (when available) and low overhead circular buffers to
provide up to 17Gbytes/second peak throughput.
3Dlabs has achieved this without compromising its long-standing commitment to quality
3D rendering. P10 delivers accuracy, stability and full OpenGL compliance while
providing a feature-rich device with unparalled real-world single-chip graphics
performance.

1.2 How to Use This Manual
The Miranda P10 Programmers’ Guide should be read together with the Miranda P10
Reference Guide which contains all of the referenced register descriptions.
The Programmers Guide contains:
• an overview of Miranda P10, its capabilities and architecture, highlighting key

differences between the P10 and earlier chipsets.
• details of the programming model for the chip, including DMA circular buffers, host

bypass to unified framebuffer, programmable unit encoding and examples, vertex
loading and context caching.

• describes the data structures that P10 supports in the framebuffer and the localbuffer.
• describes the Video System including timing, RAMDAC and overlays.

Front Matter Miranda P10 Programmers Guide

1-2 Proprietary and Confidential 3Dlabs

• Appendix A gives the format used in the pseudocode examples throughout the
document.

• Appendix B (TBC) gives further examples for unit microcoding

Following the body of the manual, a technical glossary defines many of the 2D/3D
graphics terms used throughout.
These documents are cross referenced and hyperlinked in the Word DOC format. To take
advantage of this hyperlink facility please keep your P10 manuals in one directory.

1.3 Further Reading
The following texts may be helpful in providing additonal information or clarifying 3D
programming concepts:

• 3Dlabs Publications:
• Miranda P10 Reference Guide, 3Dlabs
• Miranda P10 Architecture Overview
• Miranda P10 Datasheet

OpenGL References:
• OpenGL Programming Guide, Jackie Neider et al, Reading MA: Addison-Wesley
• OpenGL Reference Manual, Jackie Neider et al, Reading MA: Addison-Wesley
• The OpenGL Graphics System: A Specification (Version 1.1), Mark Segal and Kurt

Akeley, SGI (see below)
• Computer Graphics: Principles and Practice, James D. Foley et al, Reading MA:

Addison-Wesley

Platform and API References:

• PCI Local Bus Specification Rev2.1, 1Jun95, PCI Special Interest Group, PO Box
14070, Hillsboro, Oregon 97214 (503-797-4207)

• Multiprocessor Methods For Computer Graphics Rendering, Scott Whitman, ISBN 0-
86720-229-7

• Microsoft WIN32 Software Development Kit 3.1, Microsoft
• Windows NT 3.1 Graphics Programming, Emeryville CA, Ziff-Davis Press
• The X Window System, Sebastopol CA, O'Reilly & Associates Inc.
• The X Window System Server, Elias Israel and Erik Fortune, Digital Press

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-1

2
2 Memory

2.1 Data Formats
As data is gathered, cached as vertices, indexed, DMAd, transformed, clipped and
rendered it takes a number of forms, from raw input to floats and fixed ints, to vectors and
normals, to rendered primitives and video bus data. Much of this is common and
described in industry reference standards. However in some respects P10 is unusual,
particularly in its use of tiled memory instead of conventional linear memory.

2.1.1 Local Memory Data Format
P10 data is not laid out in the traditional linear model. Instead all data is grouped into 8
byte by 8 byte tiles which are then stacked through memory. Instead of addressing by byte
position, data is accessed by tile number, as shown in the following illustration:

Front Matter Miranda P10 Programmers Guide

2-2 Proprietary and Confidential 3Dlabs

Figure 2.1 Linear Tile Addressing

Tile 0 Tile 1 Tile 2 Tile 3

Tile
2097148

Tile
2097149

Tile
2097150

Tile
2097151

Byte 0

Byte 63

Byte 64

Byte 127

Byte 128

Byte 191

Byte 192

Byte 255

Byte 134217535
Byte 134217599

Byte 134217663
Byte 134217727

Byte 134217472

Byte 134217600
Byte 134217536

Byte 134217664

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-3

Normally, each tile corresponds to a region of a buffer (perhaps the framebuffer or a
texture); if the data type held in the buffer needs more than one byte per entry the bytes
are held in separate tiles so this is called a 'byte planar' format.

Figure 2.2 Tile to Pixel Mapping

This diagram shows a 1024x768 screen at 8 bits per pixel. At 32 bits per pixel each color
component takes one byte so consecutive tiles hold red, green, blue, and alpha. The
1024x768 screen looks like this:

Figure 2.3 Tile to Color Byte Mapping

2.1.2 Bypass Accesses
The PCI Bypass Unit connects the PCI bus with the P10 memory controller. It provides a
“bypass” path around the graphics core, through which software can read and write local
memory directly. The memory controller reads and writes 64bytes at a time from local
memory. The PCI Bypass unit has the following functions:
• Combine writes from the bus interface to reduce memory bandwidth requirements.
• Track outstanding memory writes to determine when all data has reached memory.
• Cache read data from the memory to reduce subsequent bus interface read latency.
• Optionally convert between linear and planar byte tile memory accesses based on the

bypass address.
For a full definition of the registers controlling the Bypass mechanism refer to the P10
Reference Guide Bypass Registers
PCI Bypass can be configured to read/write from the host to local graphics memory with
or without memory format conversion. The data should be converted if its destination is
ultimately the graphics core, but not if it is intended for the GPIO units. For example, if a

Front Matter Miranda P10 Programmers Guide

2-4 Proprietary and Confidential 3Dlabs

texture is transferred from host into local memory destined for the graphics core, then
format conversion should be enabled. (Or alternatively the format conversion has to be
done by the host in software.)
A command stream (e.g. an OpenGL display list) on the other hand is usually written to
local memory with the intention that it will be read by the GPIO units. In this case no
conversion should be enabled. The next section describing the GPIO Data Format
expands on this point.

2.1.3 GPIO Data Format
The GPIO input can read either from host memory or from local graphics memory. The
GPIO interprets memory as a standard linear byte stream format (not the planar byte tile
format). More details are given in a later section on GPIO about the alignment
requirements of the data, the byte swapping capabilities, the multiple simultaneous data
buffers that can be set up, etc.
Since the memory is interpreted as a linear byte stream, when the host is building a
command stream into a buffer in host memory, the data should be written in the normal
linear fashion. The GPIO can read the command stream from host memory using DMA
and will interpret the data as expected.
This also applies when the host is building a command stream in local graphics memory.
The local memory is mapped in by the host using the Bypass mechanism - in this case
should be set to its conventional linear mode. When the GPIO later reads the same
memory the memory subsystem will return the data in tiles. However each tile is simply
interpreted as a linear stream of 64 bytes so the net result is that the command stream is
interpreted correctly.

2.1.4 Re-circulating Data
The difference between the two formats - planar byte tile for the graphics core and linear
bytes for the GPIO – means that some care is required where command data is
recirculated from graphics core to the GPIO. For example, during displacement mapping
vertex data, generated by a Vertex Shader program, is written out to local memory and
then read back in via the GPIO.
Some suggested solutions to the memory reformatting necessary for this case form a part
of section 10.2.2 that describes the implementation of displacement mapping in detail.

2.2 Memory Management Introduction
P10 provides the basic tools for implementing a memory management system. The
mechanisms provided are:
• a page table to map a logical address to a physical address and determine the validity

of pages;
• an interrupt to indicate a page fault;
• a DMA controller to facilitate the transfer of pages between system memory and

graphics memory under software control.
We discuss the usefulness of these approaches the following sections.

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-5

2.2.1 Advantages and Disadvantages of Virtual Memory
The page table mechanism provided by P10 allows a level of indirection to be set up that
maps from a logical address space to a physical address space. This flexibility gives rise
to the advantages provided by the concept of virtual memory.
One of the advantages of virtual memory is that of easier and more efficient management
of a physical memory resource. When a memory management system is running it has to
handle numerous allocate and free requests of different sizes and at different times.
Typically over time this leads to fragmentation of the physical memory, so that the unused
sections of memory can be scattered about the address range in small pieces. This can
lead to the situation where an allocate request for a contiguous address range cannot be
satisfied by any of the available unused contiguous address ranges, despite the fact that
the unused memory in total would be sufficient to satisfy the request. Virtual memory
makes it possible to handle this situation, by exporting a contiguous logical address range
that satisfies the allocation request. The logical to physical mapping allows the logical
address range to be supported by numerous unused physical pages that are not at
physically contiguous addresses.
Another advantage of virtual memory is the ability to be able to support situations where
the memory requirements exceed the size of the physical memory available (which
therefore could not be supported with a simple physical memory management). Virtual
memory allows the physical memory to be treated as a fast cache, which can be used in
combination with host memory and even host disk space to support memory requirements
much greater than just the cache size.
The only disadvantage of virtual memory is the possible impact the memory address
translation may have on the memory access performance. Any performance impact is
obviously implementation dependant.

2.3 Address Translation Without Page Faulting
This section considers the use of simply enabling address translation on P10 to achieve
the benefit of improved physical memory management efficiency. In this case the logical
address space can be considered to be of the same range as the physical address space
and the page faulting mechanism is not used.

2.3.1 Address Translation Initialisation
A number of control registers manage the behaviour of the memory controller. For a full
definition of these control registers refer to the P10 Reference Guide volume 2, : Control
Registers. All registers are on 64 bit boundaries except the fifo registers which are packed
to allow bursts. The register definitions show addresses in multiples of 32 bits.
Firstly, the memory should be idle before any changes are made, which can be tested by
checking the busy flag in the MemoryControl register. Then the following registers need
to be set up:

2.3.1.1 MemoryPageTableLower and MemoryPageTableUpper

The type bitfield is set to video if the page tables are being held in local memory (which is
the preferred option for best address translation performance).
The address at which the page table entries are to be defined is given as a page address,
not byte address, and can make use of a maximum of 52 bits. The lower 20bits of the

Front Matter Miranda P10 Programmers Guide

2-6 Proprietary and Confidential 3Dlabs

address are written appropriately in MemoryPageTableLower and the upper bits in
MemoryPageTableUpper.

2.3.1.2 MemoryPageTableLimit

The size of the desired logical address range precisely defines the number of page table
entries needed. One page table entry is needed for every 4K of logical address range.
The total size of the page table entries (in units of pages) is written to the
MemoryPageTableLimit register.
Address translation can be enabled/disabled differently per memory access type using the
MemoryTranslationEnable register:
• The Bypass bit controls bypass read/write accesses.
• The Texture bit controls texture read accesses.
• The GraphicsProcessor bit controls graphics core read/write accesses, apart from

texture accesses.
• The CommandProcessor bit controls the GPIO read accesses.
• The Video bits control the read accesses made for video refresh.
A typical scenario will be to enable translation consistently for all accesses, apart perhaps
from the video accesses.

2.3.1.3 MemoryPageTableLimit exceeded

If a virtual (byte) address exceeds the virtual address range implied by the Pager Table
limit then page 0 of the Page Table is examined and defines how the “Out of Range”
access is handled. Later sections (below) describe how pagetable entries can be
initialised to report page faults.

Page Table Format
Each table entry allows for a 64bit byte-aligned physical address, and to achieve this each
entry takes 64 bits and is packed on 64 bit boundaries. The format of a page-table entry
is:

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-7

Bit Name Description
0-1 State 0 = Invalid

1 = Not Resident
2 = Read Only
3 = Read/Write

2 ContinueOnFault 0 = Stall until fault fixed
1 = Report fault and continue

3-5 Size 0 = 4K byte page size
1 = 8K byte page size
2 = 16K byte page size
3 = 32K byte page size
4 = 64K byte page size
5 = 128K byte page size
6 = 256K byte page size
7 = 512K byte page size

6-7 Type 0 = Video
1 = System (PCI)
2 = System (AGP)
3 = Reserved

8-11 Reserved
12-63 PhysicalPage Start address of the 4K page in physical

memory

 Table 2.1 Format for Page Table Entries

2.3.1.4 The State Field

Expanding the State bitfield in more detail:
• A value of 0 marks the page as invalid; accessing an invalid page is an error and will

result in a page fault interrupt.
• A value of 1 marks the page as valid but not resident in physical memory and

accessing the page will result in a page fault interrupt.
• A value of 2 marks the page as valid, resident and read only. Write access to this

page will result in a page fault interrupt.
• A value of 3 marks the page as valid, resident and allows write as well as read

access.
At start of day, prior to any allocations from the logical address space, the State field for
all entries will be 0. Then, as allocations proceed, for a non-paging scheme the relevant
entries will be updated to values of either 2 or 3 and only reset to 0 when the allocation is
explicitly freed.

Front Matter Miranda P10 Programmers Guide

2-8 Proprietary and Confidential 3Dlabs

2.3.1.5 ContinueOnFault Field

The ContinueOnFault field allows P10 to support complex virtual texture paging
operations.
The ContinueOnFault field is normally 0. As defined by the State field, a page access
may result in a page fault which causes an interrupt and stalls the page access. This
allows the device driver to either:
• signal an access error or
• repair the fault, change the page state, and restart the access.
However if ContinueOnFault = 1, the page access takes place regardless of whether a
page fault interrupt has been signalled or not.
The PhysicalPage field in the Page Table must always be a valid address when
ContinueOnFault is set Similarly when MemoryTranslationEnable enables Bypass, then
the bypass accesses automatically act as if ContinueOnFault is set regardless of the Page
Table entry, and the entry for bypass access must always be associated with a valid
physical page.. This safeguard prevents the system locking out all bus accesses due to a
bus access fault when bus access is needed to repair the fault.
Note: Continue-on-Fault uses the physical address so the offending access is

performed before the fault is flagged..

2.3.1.6 PhysicalPage and Size Fields

Pages in memory are always 4K bytes, and each 4K page has its own page table entry,
with the PhysicalPage field giving the start address of that 4K page in physical memory.
The Size field in the page-table provides further information about allocation, indicating
that a number of 4K pages are allocated consecutively and start on a suitable boundary.
For example, if the Size field has the value “2” it indicates this page is one of a group of
four consecutive 4K byte pages in physical memory, and also that the logical and physical
start addresses of this 16K “page” are aligned to a 16K byte boundary. The Size field
allows address translation hardware to optimise reading of the page tables and reduce the
number of TLB updates, although the hardware can choose to ignore this information and
will still operate correctly (because the PhysicalPage field always contains the correct start
address for each individual 4K page regardless of any Size information). Where possible
buffers should be allocated with the largest page size possible. A 4K byte page holds 64
tiles which run horizontally across the screen. Moving vertically will result in a TLB miss
for every tile if large pages are not used. A 512K byte page will hold 128 lines of a 1024
wide screen of 32 bit pixels.

2.3.1.7 Type Field

The Type bitfield is set to 0 if the physical memory is local graphics memory. Values of 1
or 2 are used when the memory has been allocated from host system memory and in
addition has been locked down to a physical page of system memory. The DMA transfer
protocol to access the system memory is either PCI (1) or AGP (2). If the system memory
is cacheable memory then using PCI protocol will guarantee to give the right results
(cache snooping occurs). If AGP protocol is wanted then the host software will need to
take care of any cache flushing required explicitly. The Type field can be different for each
page table entry, so in general the physical memory can be a mixture of local and system
memory.

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-9

The PhysicalPage field normally holds the physical address of the page; this is a 64bit
byte address to support extended addressing into system memory. The address is actually
given in units of pages; hence the bit field is 52 bits.

2.4 Memory Management With Page Faulting
This section describes the use of the page faulting support on P10 in combination with
address translation to achieve a system that can support large memory requirements
(greater than the physical local memory available).
Note: This section assumes that the reader is familiar with P10’s plain address

translation support, described in section 2.3, Address Translation.
The basic method is to define a logical address range that can be much larger than the
size of the local physical memory. Then the physical memory is treated as a fast cache
that can be used in combination with system memory to support the logical address
range. Every 4K of logical address range has a corresponding page table entry. A subset
of these entries will map to physical memory. Some of the other entries are mapped
instead to system virtual memory that acts as backing store. Any memory accesses within
the address range of a page table that does not map to physical memory is arranged to
cause a page fault interrupt and the graphics core is stalled.
The interrupt gives an opportunity for the system host to reallocate the mappings in the
page table entries. First the host arranges for the entry that faulted to be given a page in
physical memory. This may involve reusing a physical address that was previously
allocated to another entry (the other entry is therefore updated to map to appropriate
backing store and loses its physical mapping). The host then has to arrange for the
physical address to be loaded with the correct data for the faulting entry. This will typically
involve first locking down the system memory acting as backing store. A DMA controller is
then available to copy the data from system physical memory to the physical memory
allocated for the faulting page table entry. Once the physical page and its data are in
place, the host finally signals for the hardware to proceed again.
A typical memory management scheme can provide two types of allocation from the
logical address range. One type creates a mapping to physical addresses that are then
permanently fixed to that allocation and never released for re-use until the whole
allocation is explicitly freed. Allocations for graphics buffers such as front and back buffers
and depth buffers are typical cases. The other type of allocation maps to physical
addresses where these addresses are allowed to be reallocated as new allocation
requests are invoked (i.e. allows the paging mechanism to operate). Texture maps are a
typical example of use for this allocation type.

2.4.1 Page Table Format Revisited
The State bitfield is set to 1 for any entries that are being used for a logical allocation but
do not currently map to a physical address. In this case the PhysicalPage field can be
used by the host memory management to hold a system virtual address that points to the
data. The Type field is set to 0 if the data is to be copied into a local memory physical
address.
The ContinueOnFault field is typically set to 0, which causes the graphics core to stall until
a page fault is signalled as fixed (i.e. correct data in a physical page is present).

Front Matter Miranda P10 Programmers Guide

2-10 Proprietary and Confidential 3Dlabs

All transactions that cause a fault must complete eventually and it is not possible to kill an
operation that has been started. If it is important that, for example, a write to read-only
page does not complete, the page should be remapped to a safe area of memory.
Note that transactions originating as slave PCI/AGP accesses are not suspended if they
fault. Suspending bus transactions could cause deadlock, so the hardware behaviour in
this case is that the access completes and the fault is reported to indicate there has been
an error. These slave accesses correspond to bypass reads or writes, which should
therefore always be to a page that is present and valid.

2.4.2 DMA Controller
When a page fault is detected data will normally have to be transferred from system
memory to video memory. This may be done directly by the CPU reading system data and
writing it directly to the chip, or by programming the DMA controller. The sequence of
operations to fix a fault will usually be:
1. Fault detected.
2. Retrieve ID giving cause of fault retrieved from the PageControl fifo.
3. Remedy determined, list of pages to be paged out and paged in constructed.
4. DMA and table update commands sent to PageControl fifo.
Note: Page Control FIFO operations which cause a Page Table update use a

logical page number which is not validated against the PageTableLimit
register.

The cause of the page fault is communicated to the host via 4 dwords through the Page
control fifo. These dwords are read from the fifo in order, while the FIFO Count !=0

FIFO Fault Word Description
Fault ID The ID identifies the source of the address fault and is

used to restart the correct part of the memory controller.
The ID matches the bit field values defined for the
MemoryTranslation Enable command (see below).

Logical page address The actual page that faulted.

Table entry (1) 64bit page entry from the page
table that caused the fault (differs
from logical page address when
PageTable.Size > 4

Low 32 bits

Table entry (2) High 32 bits

 Table 2.2 FIFO Page Fault Data

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-11

ID Value Fault Location
0 Graphics Processor
1 VGA
2 Command Processor
3 Bypass
4 Reserved
5 Reserved
6 Video Processor Head 0
7 Video Processor Head 1

 Table 2.3 Page Fault Location ID Values
From this information the backing store for the faulting address can be identified and the
fault processed.
If the system memory used as source or destination of paging is not locked down then the
CPU must handle the copy directly through the bypass. Table update commands should
still be sent through the PageControl fifo to ensure correct ordering. All commands sent
to the PageControl fifo take 4 dwords (1 AGP fast write). The format is:

Word Bits
1 0,1 Command

0 = Table update
1 = System to video DMA
2 = Video to system DMA
3 = Invalidate

 2 Interrupt on completion
 3..9 Reserved
 10..31 Page

Command = Table update
2 0..31 Table entry
3 0..31 Table entry

Command = DMA (either type)
2 0..5 Reserved
 6..7 Type

0 = Reserved
1 = PCI
2 = AGP

 8..11 Reserved
 12..31 System page
3 0..31 System page

Command = Invalidate

Front Matter Miranda P10 Programmers Guide

2-12 Proprietary and Confidential 3Dlabs

2 0..31 Reserved
3 0..31 Reserved

All commands
4 0..7 Restart
 8..15 Reserved
 16..23 Suspend
 24..31 Reserved

 Table 2.4 Page Control FIFO Update Command Structure

The first word holds the type of command in the lower 2 bits. The options are to:
• modify a page table entry
• transfer data from system to video memory
• transfer data from video to system memory, or
• invalidate the entries in the TLB (translation look-aside buffer, a cache of page table

entries).
An additional bit indicates that an interrupt should be raised when the command has
completed. The upper bits of the first word hold a page number that this command will
use.
The following 2 words are interpreted according to the command:
• When doing a page table update the second and third words hold the page table data

that should be loaded into the table at the address given previously.
• If the command is a DMA then the page number specified in the first word is taken as

the address in local memory. The following two words specify the system address
(which is a page aligned 64 bit address).

• If the command is to invalidate the TLB, the second and third words are reserved.
The fourth word holds a mask of the possible source of memory transactions that should
be suspended before this command starts, and restarted after it completes. This gives
control over the accesses to areas of memory that are being updated to resolve a page
fault.
When a page fault occurs, the memory controller halts all further processing on the source
of the fault. As there are several sources, each with their own dedicated fifo into the
memory controller, page translations can be done in parallel.
After the host has performed all the necessary transferring of data and page table updates
to satisfy the page fault, the chip must be signaled to indicate that the faulting source can
continue with its access request. The memory controller is told to continue with
processing on a faulted source by raising the corresponding bit in the restart field of the
fourth word. This not only allows processing to restart on that source, but also invalidates
the associated TLB cache, thus causing the TLB entries that have been outdated by the
page fault handling to be re-loaded.
When using the Restart mask in operations such as Table Update a suspend mask must
also be used. The Suspend mask must must have bits set for every currently-suspended
source.

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-13

2.4.2.1 Manipulating multiple 4K pages

Page faults that require the updating of several pages of memory require special
consideration. For the entire duration of the updates, the relevant suspend bit in the
fourth word must be held high. This ensures that the memory controller maintains the
fault as blocking the associated source.
On the last page manipulation operation, the relevant restart bit is held high and the
memory controller is finally restarted.
This mode of operation is required when dealing with several pages at a time. The host
has the option to perform a number of page updates when a fault occurs, rather than
fixing up only the page that faulted. This might be an advantageous for performance
reasons if the host has knowledge that related pages are also very likely to be needed.
Overhead costs such as the OS calls required to lock down system memory can be
amortised over a larger number of page updates.
Also, the suspend bit is required to be held high when dealing with faults on pages that
have sizes larger than 4K, because the DMA engine can only handle 4K of data at a time
and so the data must be copied in 4K chunks.

2.4.3 Page Replacement Algorithms
When a new physical page is needed to satisfy a page fault it is possible that an existing
page will have to be reused. There are three commonly used page replacement
algorithms: least recently used (LRU), first-in first-out (FIFO), and random.
LRU is generally considered the best algorithm. It replaces the page that has been least
recently used (i.e. was last used further back in time than any other). It relies on future
activity being similar to past activity. Its draw back is the cost of maintaining a list of page
usage. Most UNIX systems use modified LRU that replaces the full list with an
approximation constructed periodically by a paging demon.
FIFO replaces the page that was loaded further back in time than any other. This is subtly
different to LRU because it does not take usage into account. In this case, data which is
frequently accessed over a long period of time can still get swapped out and then back in
again. Windows NT uses this algorithm because the management overheads are much
lower (per page fault instead of per access).
Random replacement simply picks the page to replace at random, and is normally the
worst algorithm, although it can improve performance of some list processing with
particularly random access patterns.
P10 hardware does not track page usage data (i.e. per access), so the LRU algorithm is
not an option, but the FIFO algorithm is a recommended option. Consider the behaviour of
the replacement algorithms for two common scenarios: thrashing and working set
replacement.
Thrashing happens when the amount of texture needed for a given frame is greater than
the pool of pages available. In this situation the LRU algorithm gives the worst
performance. Simplifying the situation, assume that all texture is accessed linearly, each
page being used once in each frame. The LRU algorithm replaces the oldest page, which
means that by the end of the frame every page will have been swapped - i.e. there is no
reuse. The performance of LRU is good up to the point where one more page than there
is room for is needed, at which point it collapses and requires every page to be loaded

Front Matter Miranda P10 Programmers Guide

2-14 Proprietary and Confidential 3Dlabs

each frame. FIFO performance is similar. Random replacement is slightly better than FIFO
because there is a (small) chance that useful data is retained.
The best way to handle thrashing appears to be to allocate a new 'thrash pool' which is
separate to the normal working set pool. When thrashing is detected the working set pool
is left as it is and all new pages are loaded into the thrash pool. This prevents useful
pages being swapped out and only thrashes the overflow from the working set. The
replacement algorithm used within the thrash pool can be the same as is normally used
for the working set.

Number of faults for pool of 50 pages

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Working set size

N
um

be
r o

f f
au

lts

FIFO Random Thrash pool

The chart shows steady state page replacement performance when the system is
thrashing; it assumes a working pool of 50 pages and working set that ranges from zero to
100 pages. The chart shows that FIFO performance hits a cliff as soon as the working set
is bigger than the pool. Random replacement is better because, at least with relatively few
pages over the pool size, some useful data is retained. Reserving space for the thrash
pool makes it start issuing faults earlier (10 pages are reserved), but as the working set
size increases it is better at keeping useful data resident.
Thrashing can be detected by counting the number of faults reported in a frame. If it
reaches the number of pages in the working pool the system is thrashing. There is no
easy way to detect the end of thrashing after switching over to using the thrash pool, other
than to occasionally switch back to working pool.
Working set replacement occurs when the scene drawn changes and some textures are
no longer used and new ones need to be loaded. This situation favours LRU replacement.
FIFO is a close approximation except for textures that are common across multiple
scenes. These will age and be swapped out, only to be needed again within the same
frame or the next one. Reloading common textures can be detected and minimized if the
frame number that a page is swapped out is recorded in the replacement list. If it is
reloaded in the same or next frame, then it can be treated as common and moved to a
common pool that is kept resident. If the working pool starts to thrash then the common

Miranda P10 Programmers Guide Memory

3Dlabs Proprietary and Confidential 2-15

pool is added to the working pool so that pages that are no longer common can be
swapped out.

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-1

3
3 Input and Output

3.1 Where to store commands and data

3.1.1 Host memory
In general DMA buffers are written once by the CPU and are read only once by the
graphics chip. For this reason it may be more efficient to store them in host memory
where they can be accessed quickly by the CPU and then ‘sucked’ across the bus at AGP
4X rates.
Earlier 3Dlabs GLINT chips used this approach and it may still be the most efficient way
for P10 in many cases. On legacy chips the overhead of starting a DMA was quite large
which meant that performing many small DMA’s was inefficient. P10 by contrast is very
efficient for small DMAs.

3.1.1.1 Framebuffer vs. Host Memory

A problem with storing DMA buffers and other data structures in host memory is Host
Memory Contention. This arises where the host AGP chipset can’t get access to host
memory because it is being used by another process (e.g. SCSI controller or CPU). (This
problem is characteristic of low-end PC systems with built-in graphics controllers that
partition part of host memory and use it as the framebuffer.) The latest Pentium 4-class
systems offer much improved memory performance but memory contention is still likely to
be a problem. For this reason items accessed frequently by the graphics chip should be
stored in the framebuffer.

3.1.1.2 Framebuffer

Traditionally the framebuffer for a 3D graphics card consists of a front buffer, back-buffer
and a cache of 3D textures, 2D bitmaps, fonts and various other ‘surfaces’.
It makes sense for objects that need to be accessed frequently by the graphics chip (and
infrequently by the host) to be stored in the framebuffer. Data structures such as OpenGL
Display Lists, which are compiled once by the CPU and read multiple times by the
graphics chip, used to be considered ideal candidates for framebuffer storage. Because
of their size (100 Mbytes or more for high-end CAD applications) it often wasn’t possible to
fit them into a 32MB framebuffer. With P10’s Logical Memory it is now possible to have a
large virtual framebuffer (2 GB) and page in parts of data structures as needed.
There can also be a problem with framebuffer memory contention (video refresh etc)
however it should be less noticeable than host memory contention because the memory
interface of the graphics card is fast and optimized for the task whereas PC memory is
generally slower and less specialized.

Input and Output Miranda P10 Programmers Guide

3-2 Proprietary and Confidential 3Dlabs

3.1.1.3 Host chipset/CPU implications

Traditionally graphics chips have been programmed by storing graphics chip commands
and data in DMA buffers. These buffers tended to be physically contiguous, non-pageable
memory and were either cacheable (when the card is plugged into a PCI bus) or
uncached (when plugged into an AGP bus).1
Note: If P10 Logical Memory is enabled the DMA buffer no longer needs to be

contiguous - the graphics chip can scatter-gather the pages from host memory.
However the memory should be ‘locked down’ on the host side (to stop the O/S
paging it out) and also be shown as non-pageable to P10 so that it does in turn
does not try to page it out.

When Intel added USWC (i.e. write-combining) support into their X86 processor, this small
CPU cache provided a significant throughput boost when copying data into an uncached
DMA buffer. USWC works by grouping up writes to USWC memory in a small cache and
sending them in a burst rather than in single transactions.
The framebuffer can also be marked as USWC. This means that any writes to it will have
their AGP burst size optimized in the same way as writes to a host memory DMA buffer.
Intel further tweaked the USWC support in the Pentium 4 processor, making it more
difficult to use efficiently. However it is now possible to use cached AGP DMA buffers
and an efficient instruction to flush the specific CPU cache lines before starting a DMA.
This is not “privileged” – it can be called from applications where previously the flush
instruction cleared all cache lines but was only callable by the kernel.
Unlike earlier chips, P10 supports AGP Fast Writes. This feature improves performance
when writing directly to the framebuffer and makes it possible to store the DMA buffer in
the framebuffer itself.
Note: Storing the DMA buffer in the framebuffer may not improve performance but it

does use valuable framebuffer memory.

3.2 Programed I/O vs. DMA
The simplest method of getting data into a piece of hardware is to write it, one word at a
time, into some sort of input register. The problem with this is that a large FIFO buffer is
required on this register in order to smooth over periods when the hardware can not
consume the incoming data stream fast enough. Such large FIFOs are expensive in
hardware terms and so undesirable. The host must also regularly check the amount of
free space in this FIFO so as not to overflow it.
The alternative method is for the host to write its data stream into a normal memory buffer
somewhere and let the hardware read it out via DMA as and when it is ready. Using
standard system or graphics memory for this means there is no additional hardware cost
for having very large buffers (e.g. 1MB or more). It also means that there can be an
arbitrary number of independant buffers. So multiple processes can be filling in their own
private buffers without fear of interference.

1 PCI chipsets snoop the CPU cache which is why PCI supports cached memory but AGP does not.

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-3

3.2.1 The Input Message Port
Due to these performance limitations of the FIFO scheme, it was decided to include such
a facility only as a debugging tool. The interface presented to the user is a very simple
message port without any buffering (i.e. a 1-deep FIFO). The registers for controlling this
are:
• IMsgReady
• IMsgTag
• IMsgData0 -> IMsgData3
The IMsgReady register contains a single bit which indicates the status of the IMP. If it is
set, then data can be written to the other registers. This must be checked before every
message/command which is sent to this port.
IMsgTag contains the 10-bit tag value and a 2-bit size. The 1-based size field indicates
how many of the IMsgData# registers will be used to provide the data field. Writing the
last 32-bit data value will trigger the sending of the message. Messages are always sent
with 128 bits of data, if fewer bits are provided by the user, the following defaults are
used:
• IMsgData0: must be provided
• IMsgData1: IEEE float 0.0
• IMsgData2: IEEE float 0.0
• IMsgData3: IEEE float 1.0

There is one message port for each rendering channel through the P10 core (see section
3.5, “Dual Command Streams”).

3.2.2 The DMA Interface
The proper way of getting data into the chip is to use DMA.
Miranda implements a sophisticated circular buffer scheme in hardware. The basic idea is
to make the whole process as efficient as possible. This means keeping the buffer
management overheads to a minimum.
The scheme is based around a hardware managed buffer with two pointers in to it. One is
the chip's read pointer, the other is the host's write pointer. Basic operation is that the host
will write to the front of the buffer and increment the write pointer. The chip will then start
reading this data, incrementing the read pointer as it goes. By having both of these
pointers as hardware registers, the chip will always know how much data is available for
reading, and the host can always find out exactly how much data has been processed.
The buffer is initialised at start of day by setting CbufAddr, the logical address to read
from (the start of the buffer). This can be in host memory or in video memory (see earlier
for the pros and cons of each).
• Byte swapping enables if required.
• CBufEnableBusy:
• The context address if required (see section 3.6, Multiple Contexts).
The read and write pointers (CBufWrPtr & CBufRdPtr) can then be used. These are given
as 32-bit word offsets from the start of the buffer. This means that the user's code does
not need to worry about where the buffer is mapped in to the hardware's logical address
space.

Input and Output Miranda P10 Programmers Guide

3-4 Proprietary and Confidential 3Dlabs

3.3 Circular DMA Buffers
Because the read and write pointers are hardware managed, the buffer can be treated as
a single, circular DMA buffer with a transfer granularity of one 32-bit word.
Wrapping around the end of the buffer is achieved by the simple operation of writing the
write pointer back at the start. The DMA engine has no concept of where the end of the
buffer is, it only knows what the highest write pointer value was and will read up to there.
It does know what the buffer's start address value was though. So when the write pointer
is set to a lower value than it was previously, this is interpreted as:

• Old (higher) value = end of buffer read from read pointer to here

• New (lower) value = 'current end' of next buffer read from start to here
The only restriction on the value put in the write pointer is that the engine must have
finished reading any old data which was 'underneath' the new stuff. I.e., it must not
overtake the read pointer. From a software point of view, this is a valid restriction anyway
because if it happens, then the host will have been over writing data which had not yet
been transferred.

3.3.1 Layout, Read/Write Pointers and Scheduling - Software
Implementation:
In general, the host will want to send DMA data in chunks of one or more complete
commands. At the very least, it must not split a tag from its associated data. Also, the
DMA code does not want to be reading or writing across the AGP bus for every word of
dta which is to be added to the buffer. This implies a scheme involving three basic
operations:
• Wait for X words of space
• Queue some data
• Send all queued data

3.3.1.1 Wait For Space:

This should be called before any chunk of data is added to the DMA queue. It must
reserve at least as much space as there is data to queue. However, there is no need to
get the figure exactly right, there is no problem or penalty if too much space is reserved
(as long as it is not hugely inaccurate) as the buffer itself will normally be several orders of
magnitude larger than the request.
What this operation needs to do is to add the requested size to the current write pointer
and compare this new, potential write pointer to the current hardware read pointer. If it has
gone past, then the routine must block in some manner until the read pointer has moved
on enough.

A Mental Block
There are a number of ways the blocking can be achieved depending upon the intended
application, the level of OS support, etc. The most basic is to simply poll the read pointer
continuously until it reaches a suitable value. To avoid hogging the AGP bus, this polling
loop should contain some sort of delay even if it is only executing a processor no-op
instruction several hundred (or thousand, according to CPU speed) times.

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-5

A more system friendly approach would be to use some sort of OS provided semaphore
mechanism. Command IDs (see below) could be inserted into the DMA stream at
strategic intervals (e.g. after any particular large render command, or just every X words).
For safety, the wait routine should probably add its own id as well, just to make sure there
is one in the buffer somewhere (although this means that the wait must always leave
some space after it and never allow the buffer to fill completely).
The wait routine would then call the OS to block its process until a specific semaphore
object has been signalled. The CommandIds would be set to generate an interrupt and
the interrupt handler would signal this object and so wake the wait process.
Of course, care must be taken to ensure that the semaphore is cleared, signalled and
waited on in a sensible order otherwise the CommandId could get missed and the system
would deadlock.

Learning to Read:
Care must be taken when examining the read pointer because it can be in two different
positions relative to the write pointer giving different calculations of how much fress space
there is:

 |<-----free----->|<---pending--->|<-----free----->|
 | | | | Free = End - Write
 |----------------+--------------+---------------|
 Start Read Write End

 |<----pending--->|<-----free---->|<----pending--->|
 | | | | Free = Read - Write
 |----------------+--------------+---------------|
 Start Write Read End

Round and Round and Round and ...
If the new write pointer is actually outside of the DMA buffer, i.e. it has run off the end,
then the code must wrap around to the start again. In theory this is simply a case of
starting the free space test again with a base address of zero rather than the current write
pointer.
In practice, there is a problem if the request is for more than half the buffer size. For
example, a request is made for X words and does not fit in the remaing space, X is also
more than half the buffer size:

Input and Output Miranda P10 Programmers Guide

3-6 Proprietary and Confidential 3Dlabs

 |<-----------------X----------------->|
 |-----------------+-------+-------------------------|
 Start Write Centre End

After wrapping, the picture is:

 |<-----------------X----------------->|
 |-----------------+-------+-------------------------|
 Start Last Centre End
 Write

The problem here is that the last write pointer, and hence the place the read pointer will
eventually stop at, is not far enough in for the request to be satisfied no matter how long
the routine waits for.
• There are a number of solutions to this problem:
• Do not allow requests of more than half the buffer size;
• Keep track of the last write pointer and treat the buffer as empty when the read

pointer matches it;
• Always queue some fake data at the start of the buffer when wrapping (e.g. a

CommandId tag which will be consumed by the DMA engine itself and so not interfere
with any ongoing rendering). This will ensure that the read pointer always wraps along
with the wait routine and so will present an empty (less two words for the CommandId
tag) buffer.

3.3.1.2 Queue Some Data:

This would be done by having a software only copy of the write pointer which is
incremented as data is written into the buffer at its position.

3.3.1.3 Send The Data:

This is simply a case of copying the above software write pointer into the hardware one.

3.4 DMA
DMA use in P10 is covered in previous sections on the DMA Interface (sect. 3.2.2) and
Circular DMA (section 3.3) and in Isochronous DMA (section 3.5 below).

3.5 Dual Command Streams
P10 supports two independent input streams: Graphics Processing (3D and regular 2D)
and Isochronous.

3.5.1 DMA stream
Input streams can be:

• Regular DMA
• Circular buffer (up to 16, automatically scheduled)
• From host memory or on-card memory
• At two levels of hierarchy

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-7

3.5.2 Vertex and Index Data Stream
The GPIO unit supports two forms of caching of vertex and index data. Data can be
cached either in the unit itself or in a post-T+L form further down the pipeline. The latter
method can only be used with indexed primitives. This is discussed further in Section
3.7.2, Caching Indexed Vertex Arrays can use 8, 16 and 32 bit indices.

• Two sets of indices
• Index caching to control vertex caches
• Independent lines, triangles and quads only

Vertex Array Elements may be:
• 1 to 4 words per parameter
• 1 to 16 parameters per element
• 1 to 16 disjoint parameter streams

…and are fully DX8 compatible

3.5.3 Output DMA
The Output DMA stream returns data to host memory or local memory. It supports Image
uploads and State return

3.6 Multiple Contexts
In a modern system, there can be several different applications all wanting to draw their
own private displays. The Miranda architecture provides dedicated support for up to
sixteen completely independant rendering streams. As there is only one pipeline through
the geometry and rasteriser engines, these different streams are multiplexed together at
the DMA engine level.
Basically, there are sixteen different sets of read and write pointers, enables and base
addresses. These operate entirely independantly and so can be written to or read from by
multiple processes or threads (even if they are running concurrently on multiple
processors) without fear of interference.
This is achieved via a DMA scheduler. It is the scheduler's job to arbitrate between the
various active DMA contexts and to keep the rest of the chip informed as to which context
it is processing work for.

3.6.1 Context Switching
In addition to issuing the DMA requests for each context as appropriate, the scheduler
also tells the rest of the chip whether a given DMA request belongs to a different context
from the previous one or not.?? In the case where the new request is for a new context,
the old context's hardware state must be saved away and the new one's restored.
As previously mentioned, each context has an enable register which contains a context
address. This is the logical tile address that the hardware state for that context is saved
to. All impotnant state for the geometry and rasteriser units is saved and restored in this
manner. The only exceptions are the internal registers of some of the programmable units.
See the sections on each unit for details on programming for safe context switching.

Input and Output Miranda P10 Programmers Guide

3-8 Proprietary and Confidential 3Dlabs

3.6.2 User-induced and Isochronous Switches
TBA

3.6.2.1 Time Stamps

TBA

3.6.3 Context Scheduling
The scheduler is based around a FIFO queing mechanism. Whenever a given context's
write pointer is updated by the host, that context is added to the FIFO. If the context is
already in the FIFO, the two requests are simply concatenated. Thus the FIFO can never
overflow no matter how much work the host is queueing up.
As long as the output pipe from the scheduler is unblocked, the context at the head of the
FIFO will be removed and whatever work it has outstanding will be forwarded to the DMA
engine proper to be processed.
There is also a timeout mechanism which can be used to prevent context thrashing. For
example, if two contexts are continuously being given tiny amounts of work to do then the
scheduler can end up switching at the same rate and so issuing very inefficient, tiny DMAs
with a full context save and restore on either side. If a time out value is set, then although
the work will be issued for the context at the head of the queue as and when it comes in,
that context will not be removed until after the time out expires. This will hold the next
context off for a while and let it build up a reasonable amount of work which will
subsequently be issued in a single, larger, more efficient lump. It also removes the
majority of the context save and restores.
In practice, the timeout mechanism may not be necessary. If the chip can keep up with the
requests no matter how inefficient they are, then there is no problem. If it can not, then it
will back up behind which ever unit is busy. When the blockage reaches the scheduler, it
will cease removing entries from its FIFO and begin concatenating requests. As soon as
the blockage is gone, these larger requests will be issued. The pipeline between the
scheduler and the DMA engine proper is very short so inefficient DMA requests will quickly
stall the scheduler. Thus the whole susyem is fairly well self-regulating

3.6.4 Driver Controlled Scheduling:
Under certain circumstances, it may be necessary for the driver to exercise some control
over the order in which the various contexts are processed.
The simple level of control is the SuspendUsr register. This is a bit field of suspend flags,
one for each of the sixteen user contexts. Any context whose bit is set will be blocked
from placing its entry in the scheduler's FIFO. So this can be used to temporarily suspend
one or more contexts until some particular condition has been met.
If more control is required, then the driver can take over the entire scheduling process and
do everything manually. This is done by enabling the time out interrupt and the time out
itself. The driver can then set the suspend mask to only allow one particular context to
run. When the timeout interrupt occurs, the mask can be updated to allow a different
context to run. In this way, the driver can schedule the various contexts in any order it
sees fit in a completely deterministic manner irrespective of how the applications
themselves are wanting to queue up their work..

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-9

3.6.5 Context Security
For reasons of efficiency it can be desirable to let a user-land process have direct access
to the hardware read and write pointers. This would remove the need to switch from user
land (where the application/driver which is generating the rendering command stream
lives) to kernel land (where the driver has hardware access) to actually issue to DMA
request. This transition can be very slow on some operating systems. So removing it is
desirable, especially if the DMA request granularity is small and so the transition is a
frequent occurance.
To this end, the registers for controlling the DMA buffers are split into two distinct regions.
The kernel region contains all the setup registers that only the kernel land portion of the
driver is allowed to touch. This regions should be mapped into memory such that only the
kernel has access to it.
The second region is an array of sixteen read/write pointers and Command/Sync ids.
Each set is placed in its own 4K page. The idea is that it should be possible to map the
one specific page appropriate to an application into that application's address space in
userland. A user land portion of the driver can then talk directly to the hardware in order to
operate its own private DMA buffer.
This is a potentially dangerous thing to do because user land applications are not under
the driver write's control and can have a tendancy to write random values to random
locations. If such an error happens to hit the write pointer, then random data could get
DMAd (and potentially from outside the DMA buffer which may not even be valid memory
to read) and all sorts of nasty things could happen.
In order to prevent this, the write pointers have been fitted with a magic number field. The
'official' magic number is set by the kernel land driver at startup and is communicated to
the user land driver when the a new context is created and handed over to the user land
driver. If a write pointer update does not contain this magic number, then it will be
discarded by the chip.
The odds are that any random error in the application itself will either not hit this one
special location, or that it it does, it will not have the correct magic number in it. If the odds
are not acceptable, of course, the driver can simply leave everything in kernel land only
and just take the user -> kernel transition perforamnce hit.

3.6.5.1 Command Ids and Sync Ids:

These are two methods of synchronising the hardware with the host. The former is for
keeping track of command DMA buffers, the latter for tracking actual rendering. Each
context has its own private pair of ids which it is free to use at it likes. They are basically
just user storage registers and whatever value is send in with the tag can be read back
after the tag has been consumed by the appropriate unit.
The CommandId tag is consumed by the DMA engine and this is the last thing done in
the DMA unit. So by the time a given CommandId value is put into the read back register
and is visible to the driver, the driver knows that all commands in the DMA buffer before
that id have been read. That is, the DMA itself has finished up to that point, the
commands will not necessarily have been processed by any part of the graphics pipeline
yet.
The Sync tag is consumed by the HostOut unit right at the back end of the graphics
pipeline. This means that by the time a given sync value is read back by the driver, all
rendering which was in the DMA buffer before the Sync tag will have been completed. The

Input and Output Miranda P10 Programmers Guide

3-10 Proprietary and Confidential 3Dlabs

Sync tag also has a the effect of causing all units to flush out any work they have batched
up, sat in write caches, etc. Thus, when a sync value is read back by a given context, that
context knows that all work it had queued up prior to the sync has fully completed.

3.7 Vertex and Index Buffers (GPIO)
The GPIO (Graphics Processor Input/Output) unit in P10 provides a very general
mechanism for reading multiple streams of data into the P10 core. The obvious use for
these data streams is to interpret them as vertex data (optionally indexed) and to pass
that data on down the pipeline (to the Vertex Shader to be transformed and lit, for
example). As an example of the generality of the GPIO unit, the indexing mechanism can
also be used to perform palette expansion image downloads using 8 bit indices, where the
“index” data is the source paletted image and the “vertex” data is the palette. While the
rest of the pipeline must play its part in providing the multitude of 3D processing functions
on chip, the GPIO unit is the data gathering gateway to that on-chip functionality.
The principle use of the GPIO unit is to facilitate the drawing of 3D primitives. In particular,
it is desirable to be able to render all 3D primitives without touching the index/vertex data
on the host (providing the app and the OS/API allows that).
If the driver has to read the index/vertex data on the host in order to pre-process it or even
just to copy it into a DMA buffer then substantial front-side bus bandwidth (in the host
chipset) can be consumed and performance will be compromised. The GPIO unit assists
in this matter by matching vertex data with tags according to a driver-supplied mapping.
This mapping is commonly updated infrequently minimising managements overheads (
the frequency is obviously app dependent but Direct3D apps tend to submit large batches
of primitives because ISVs have been educated about the benefits of batching). An
alternative would be for the driver to build a DMA buffer which contains tag/data pairs and
send that to the chip - so the GPIO unit helps minimise the amount of data read by the
chip as well as avoiding the driver reading the vertex data at all in a number of cases.
There are some situations in which the host cannot avoid touching the data e.g. OpenGL
immediate mode where the app supplies the vertex data on the fly. Even in this case the
GPIO unit can be useful – the driver can track the vertex data pattern, infer the vertex
format, multi-buffer the vertex data in USWC memory and then issue GPIO requests to
initiate rendering when a given threshold is reached. The advantage of this scheme is that
the driver does not have to write tags and data into a DMA buffer – just the data is written.
The GPIO unit supports two forms of caching of vertex and index data. Data can be
cached either in the unit itself or in a post-T+L form further down the pipeline. The latter
method can only be used with indexed primitives. This is discussed further in Section
3.7.2, Caching.

3.7.1 Organizing data in memory
The AGP bus does not have enough bandwidth (even at 4x with 100% efficiency) to
deliver all the vertex data that P10 can process (the AGP bus limit is approximately 32
million vertices/sec @ 32 bytes/vertex c.f. P10 vertex throughput of up to 50 million/sec).
The bandwidth to P10 local video memory is much higher than AGP4x (16 times greater)
and so P10 allows vertex data to be read from (and also wriiten to) local video memory,
to take advantage of this higher bandwidth.

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-11

DirectX provides a mechanism for an application to allocate memory in which to store
vertex data.- this memory is known as a vertex buffer. Indexed primitives require indices (
up to 32 bits on P10, of which 24 are usable) and these can be stored in index buffers.
DirectX distinguishes two classes of vertex data – static and dynamic. Static vertex data is
guaranteed to never be modified and so it is an excellent candidate for being placed in
local video memory. Dynamic data may be modified and it is up to the driver to decide
where best to place it. The vertex buffer could be in USWC system memory (allocated
from the AGP heap, for example) where the write access for the app is fast but the
transfer over the AGP bus is relatively slow. Alternatively, the vertex buffer could be
allocated in local video memory. In the latter case, updating the vertex data will be
relatively slow but the core will be able to read the data very quickly.
Index buffers can also be read from local video memory on P10, however the advantage
of local video memory index buffers is less clear. Because the bandwidth requirements of
index data are much lower than that of vertex data (say 6 bytes per triangle c.f. one new
32 byte vertex per triangle) it may be best to stream the index data over the AGP bus in
parallel with vertex data reads over the local video memory bus.

3.7.2 Caching
The GPIO unit operates two forms of caching which improve vertex throughput. The first
form of caching uses the address of a vertex as a key to avoid fetching a given vertex
multiple times, thus reducing bus (either AGP or internal) traffic. The second form of
caching uses the index as a key to avoid lighting and transforming a vertex multiple times.
This second cache only operates for non-connected indexed primitives i.e indexed line
lists and indexed triangle lists. Connected primitives, strips and fans, already have an
implicit caching strategy which could in principle be augmented with index-keyed caching
but for simplicity are not.
The address-keyed cache is invalidated when the enables for a buffer are changed . The
index-keyed cache is enabled and invalidated via bits in the Begin command (see
checklists in Drawing primitives below).
The index-keyed cache has 16 entries and so there is reasonable scope for an app to
reorder its meshes to maximise the hit-rate in the cache. It is possible for a driver to re-
order indexed meshes to improve the effectiveness of this cache but this is likely to only
be a performance win for static meshes. The longer the program running in the Vertex
Shader the larger the benefit of the index-keyed cache.
When caching is enabled it overrides the normal primitive assembly mechanism (which is
usually transparent to the driver). Therefore the driver needs to re-synchronise the
mechanism when switching between cached and non-cached rendering (see checklists in
Drawing primitives below). In addition the current edge flag must be set.

3.7.3 Preparing to Draw Primitives
The GPIO unit can read data via up to two index buffers and from up to 16 data buffers.
Up to 16 elements of 1, 2, 3 or 4 32-bit units can be defined. The GPIO unit can be
programmed to assign a particular tag to each element or to skip an element if that
particular element is not required to be processed by the pipeline. Skipped elements can
arise during multi-pass rendering techniques when, for example, an app may generate a
vertex with 12 sets of texture coordinates, reference eight of them in one pass and the
remaining four in another pass. In addition to reading 2 index buffers automatically a

Input and Output Miranda P10 Programmers Guide

3-12 Proprietary and Confidential 3Dlabs

further 14 index buffers can be emulated by sending VertexIndex tags and data inline in
the DMA stream.
It is useful to understand that the GPIO unit performs two operations simultaneously when
processing vertex data. The first process gathers data from the enabled input data buffers
(optionally indexed) in a round-robin fashion interleaving that data into one data stream
inside the unit. The second process assigns meaning to vertex elements in that data
stream by associating a tag with each element. As noted above it is possible to skip an
element rather than associate a tag – the data for that element is discarded and is not
seen by downstream units. There is no requirement to have the number of enabled data
buffers match the number of parameters in the vertex – they are independent. For
example, there may be two enabled data streams, one supplying two parameters (e.g.
position and normal) and the other supplying three parameters (e.g. three sets of texture
coordinates) to build a vertex with a total of five parameters.

The chip performs index checking as required by DirectX. Index checking ensures that a
given index will not cause an out of range access into the corresponding data buffer.
So, to prepare for drawing primitives, it is necessary to define and enable the input buffers
and define the association of tags to vertex elements. The following check-list expands on
those steps:
• Send a VertexDataBufferN (N = [0-15]) command for each enabled data buffer –

this is a 64-bit command that encodes the buffer address, the byte-swap mode, the
data size and data stride for that buffer. The latter two fields are in 32-bit units minus
one.

• Send a VertexDataBufferEnable command with a bit set for each enabled data
buffer. This also invalidates the read-cache and may need to be issued for each
primitive, depending on the location of the data.

• Send a VertexIndexBufferN (N = [0-2]) command for each enabled index buffer –
this is a 64-bit command that encodes the buffer address, the byte-swap mode, the
index size and an enable mask for each data buffer that should be indexed by the
index buffer..

• Send a VertexIndexBufferEnable command with a bit set for each enabled index
buffer.

• Send a VertexIndexBounds command to configure index checking – this is a 64-bit
command that encodes a lower and upper bound. DirectX only supports one index
buffer so there is only one copy of this register rather than the two you might expect.

• Send a VertexParameterMsgN (N = [0-15]) command for each parameter – this
encodes the tag to associate with that parameter, the size of the parameter (in 32-bit
units minus one) and whether to send or skip the parameter

• Send a VertexParameterEnable command with a bit set for each enabled parameter

3.7.4 Drawing Primitives

Checklist of the steps required to render a triangle fan in DirectX7.
• Send Begin command with TriangleFan primitive type
• Send VertexDataBufferLookup command. This is a 64-bit command containing the

first vertex and number of vertices to read from the enabled data buffer(s)

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-13

• Send End command. This is used for closing line loops and triangle fans and so is
not required for DirectX.

Checklist of the steps required to render an indexed triangle list in DirectX7.

• Send VertexMachineState command with data of 0 to reset the primitive assembly

mechanism if using index-keyed caching.
• Send EdgeFlag command with data of the currentEdgeFlag to get edges drawn

correctly when in wire-frame mode.
• Send Begin command with Triangle primitive type and the cache Invalidate and

Enable bits set if index-keyed caching is required.
• Send VertexIndexBufferLookup command. This is a 64-bit command containing the

first index and number of indices to read from the enabled index buffer(s). If using
non 32-bit indices the start value can be used to offset the index lookup to cope with
a non 32-bit aligned index buffer.

• Send End command. This is used for closing line loops and triangle fans and so is
not required for DirectX.

3.8 Downloading Textures
Texture map downloads need to write the texture data into a memory location from which
the core can subsequently access the data during rasterisation. This data can either be
directly into video memory using the host or it can be downloaded through the core as per
pixel data downloads For details refer to section 7.2, “Texture maps (download, MIPmap
generation)”

3.9 DXVA Driver
Hardware support for video playback is a desirable component of a graphics accelerator.
There is a family of video encode/decode standards known as MPEG which have become
widely accepted. DirectX Video Acceleration (DXVA) is Microsoft's API to enable access
to hardware accelerated MPEG decoding. There are multiple levels of DXVA acceleration
ranging from simple motion compensation to performing IDCT (inverse discrete cosine
transform) processing and raw bit-stream decompression.
In principle, P10 can support motion compensation and IDCT processing efficiently
whereas the bit-stream decompression does not map well onto any of the various SIMD
processors in the graphics core. Motion compensation (mocomp) is a form of multi-
texturing whereas the IDCT could be implemented using the Vertex Shader unit. Due to
the high performance of current host processors a hardware accelerated mocomp-only
solution (MPEG 2) is sufficient for acceptable performance. Chapter 8 discusses the
design of a HW mocomp accelerator for P10.

3.10 Video Port
The Video Port Unit – VPU – implements a VESA Video Interface Port (VIP) Version 2
Level II video port master.

Input and Output Miranda P10 Programmers Guide

3-14 Proprietary and Confidential 3Dlabs

The VPU supports the following:
• ITU-R BT.656 video stream – 8-bit @ 27MHz
• VIP1.1 video port – 8-bit @ 27Mhz
• VIP2 Level I video port – 8-bit @ 75MHz
• Proprietary VIP2 video port – 8-bit @ 150MHz

The VPU does not support the following:
• VIP1.1 or VIP2 host port
• VIP2 Level II video port – 16-bit @ 75MHz
• VIP2 Level III video port – 8-bit @ 75MHz input + 8-bit @ 80MHz output

Familiarity with the following standards/recommendations is assumed:
• VESA Video Interface Port Standard, Version 2
• Recommendation ITU-R BT.656, Interfaces For Digital Component Video Signals In

525-Line And 625-Line Television Systems Operating At The 4:2:2 Level Of
Recommendation ITU-R BT.601 (Part A)

• Recommendation ITU-R BT.601, Studio Encoding Parameters Of Digital Television
For Standard 4:3 And Wide-Screen 16:9 Aspect Ratios

3.10.1 Video Stream Formats
Active video is formatted as 4:2:2 YCrCb, and is transmitted as a byte stream of Cb-Y-Cr-
Y. The conversion of 4:2:2 YCrCb to RGB is described in ITU-R BT.601.
The VIP2 Level I video port provides 8-bit samples; control codes are interleaved with the
data:

3.10.1.1 Empty Cycles

In VIP2, skip data (“00”) during active video is used to mark an empty cycle. In the VPU,
empty cycles are optionally discarded. If the video stream is known to contain empty
cycles, “00” bytes should be discarded. If the video stream conforms to ITU-R BT.656, or
is known to contain out-of-range values, “00” bytes should be kept.

3.10.1.2 Blanking Data

VIP2 supports the transport of data other than video as ancillary data blocks during
horizontal or vertical blanking intervals only.

Cb
0

Y
0

Cr
0

Cb
2

Cr
2 00 FF

Blanking Data Active Video SAV EAV

B
0

VIP2 8-bit Video

00 RP B
1 FF 00 00 RP Y

1
Y
2

Y
3

B
2

B
3

B
4

B
5

B
6

B
7 VID[7:0]

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-15

The VPU does not interpret blanking data in any way. Blanking data is optionally stored in
memory if needed by host software, otherwise it should be discarded to save memory
bandwidth.

3.10.2 SAV and EAV Timing Reference Signals
The SAV and EAV timing reference signals are 4-byte sequences defined in ITU-R BT.656
and extended in VIP1.1 and VIP2.
The first 3 bytes are the fixed preamble “FF”, “00”, “00”.
The 4th byte is the reference byte (RP):
• Bit 7 = Task (T) bit. ‘1’ = Task A, ‘0’ = Task B. In ITU-R BT.656 this is fixed to ‘1’. In

VIP1.1 and VIP2 this is used to distinguish two different tasks. In the VPU this is used
to distinguish two different destinations in memory and frame interrupts (see later).
The two tasks can be interleaved in Line or Field mode.

• Bit 6 = Field (F) bit. ‘0’ = Field 1, ‘1’ = Field 2.
• Bit 5 = Vertical blanking (V) bit. ‘0’ = active video, ‘1’ = vertical blanking interval.
• Bit 4 = Horizontal blanking (H) bit. ‘0’ = active video (in SAV), ‘1’ = horizontal blanking

interval (in EAV).
• Bits 3:0 vary. In ITU-R BT.656 and VIP1.1 they are protection (P[3:0]) bits. In VIP2

they contain new video flags. In the VPU they are ignored.
The VPU uses the H bit from the SAV and EAV to control horizontal state, and the V, F
and T bits from the EAV only to control vertical state.

3.10.3 DTV Display Formats
VIP2 DTV display formats are specified by the position of the SAV and EAV. These in turn
identify the task, field, and blanking intervals.
In the VPU, horizontal samples are counted from 0 at the start of the horizontal blanking
interval, and the first line of the frame is the first line of the vertical blanking interval. In
interlaced video, with two vertical blanking intervals, the start field is also specified.
For example, this is how the 525-line System is formatted for the VPU:

Input and Output Miranda P10 Programmers Guide

3-16 Proprietary and Confidential 3Dlabs

Figure 3.10 SAV and EAV Paramters for 525-line VPU

The positions of the SAV and EAV, the interlaced flag, and the start field needed to
program the VPU for the example VIP2 DTV display formats are as follows:

DTV Display Format SAV Pos EAV Pos Interlaced Start Field
525-line System (720×487×30Hz) 268 1712 1 1
625-line System (720×576×25Hz) 280 1724 1 1
480P (704×480×60Hz) 300 1712 0 -
720I (1280×720×30Hz) 362 1646 1 1
720P (1280×720×60Hz) 362 1646 0 -
1080I (1920×1080×30Hz) 272 2196 1 1

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-17

Note: The SAV position is the width of the horizontal blanking interval.
 The EAV position + 4 is the width of the frame.

3.10.4 Fields and Frame
Frames are stored in individual buffers in memory. For non-interlaced video, the EAV Field
(F) bit is ignored. For interlaced video, the EAV Field (F) bit is matched against a start field
to determine the 1st field in the frame.
An interlaced video source can be stored as non-interlaced frames. This might be used to
de-interlace video. A non-interlaced video source must never be stored as interlaced
frames, because the EAV Field (F) bit never changes and the next frame will never be
found.

3.10.5 Frames and Memory
The VPU can store frames in 1, 2 or 3 buffers per task. Host software provides up to 3
buffer addresses per task, and the VPU cycles through the buffers in turn. Triple buffering
allows the VPU to cope with mismatched input and output frame rates.
An indexing scheme allows the chip and host to signal which buffer each is currently
processing. The chip maintains a 2-bit write index (WrIdx) per task, which indicates which
buffer is currently being written. The host maintains a 2-bit read index (RdIdx) per task,
which indicates which buffer is currently being read. When each side has finished
processing its current buffer, it advances its index to the successive buffer.
The protocol for their correct use is that each side must not reach the other’s index. If
either side would otherwise reach the other’s index, it must preserve its current index and
re-use the current buffer.
The maximum index is set by the host. The chip will wrap its index from the maximum
back to 0, and the host should do likewise. If the host sets its read index past the
maximum, the chip will continually write frames without ever waiting for the host. This
might be useful in some diagnostic applications.
For example, this is how triple buffering might look:

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2 0 1 2

WrIdx

RdIdx

1. At reset 2. After chip write

3. After chip write 4. After host read

5. After chip write 6. After host read

WrIdx

WrIdx WrIdx

WrIdx WrIdx

RdIdx

RdIdx RdIdx

RdIdx RdIdx

Input and Output Miranda P10 Programmers Guide

3-18 Proprietary and Confidential 3Dlabs

3.10.6 Frame Interrupts
As well as advancing its write index, the chip will also generate a frame interrupt when it
has finished processing its current frame. The interrupt is generated even if the chip could
not advance its index to the successive buffer. Host software detects dropped frames in
its interrupt handler by finding the write index unchanged.

3.10.7 Programming Summary
Host software initiates the video port as follows:
1. Start IClk, by initiating the external video source.
2. Initialise VPUIClk, by writing the following registers:

• Mode
• SAVPos & EAVPos
• BufAddr[0..1][0..2]
• RdIdx

3. Take VPUIClk out of reset, by writing the Enable register.

Host software terminates the video port as follows:
1. Force VPUIClk into reset, by writing the Enable register.
2. Stop IClk, by terminating the external video source.

3.10.8 Programming Example
This is an example of how to initialise and terminate the VPU for the 525-line System.
The assumptions are that:

• Only Task A (‘1’) is present.
• The input and output frame rates are mismatched, so triple buffering is used.
• Host software will perform de-interlacing, so the video source is stored as non-

interlaced frames.

struct Mode
{
 unsigned : 1;
 unsigned XVideo : 1;
 unsigned SwapData : 1;
 unsigned SkipData : 1;
 unsigned HBStore : 1;
 unsigned VBStore : 1;
 unsigned Interlaced : 1;
 unsigned StartField : 1;
 unsigned MaxIdx : 2;
 unsigned : 22;

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-19

 Mode& operator=(const unsigned i) { *((unsigned *)this) = i; return (*this); }
 operator unsigned(void) const { return (*((unsigned *)this)); }
};

extern void VPUWrite(
const unsigned Addr,
const unsigned Data);

void Init525(
const uint25 BufAddr)
{
 Mode M;
 const unsigned SAVPos = 268;
 const unsigned EAVPos = 1712;
 const unsigned Stride = (((EAVPos+4)+63)/64);
 uint25 BufAddr0, BufAddr1, BufAddr2;
 unsigned Data;

 //
 // Initialise mode.
 //
 M = 0;
 M.XVideo = 0; // 8-bit video
 M.SwapData = 0; // (only applies to 16-bit video)
 M.SkipData = 1; // Discard empty cycles
 M.HBStore = 1; // Store horizontal blanking data
 M.VBStore = 1; // Store vertical blanking data
 M.Interlaced = 0; // Store video source as non-interlaced

frames
 M.StartField = 0; // (only applies to interlaced frames)
 M.MaxIdx = 2; // Triple buffering

 VPUWrite(eMode, M);

 //
 // Initialise SAV/EAV positions.
 //
 VPUWrite(eSAVPos, SAVPos);
 VPUWrite(eEAVPos, EAVPos);

 //
 // Initialise buffer 0, 1 & 2 addresses.
 //
 // The 25-bit buffer address is a 28-bit tile address
 // aligned to an 8-tile boundary (VPU has linear access to memory).
 // 525-line System Field 1 is 263 lines and Field 2 is 262 lines,
 // so each buffer holds 263 lines rounded up to an 8-tile boundary.
 //
 BufAddr0 = BufAddr;
 BufAddr1 = BufAddr0 + (Stride * ((263+7)/8));
 BufAddr2 = BufAddr1 + (Stride * ((263+7)/8));
 VPUWrite(eBufAddr10, BufAddr0);

Input and Output Miranda P10 Programmers Guide

3-20 Proprietary and Confidential 3Dlabs

 VPUWrite(eBufAddr11, BufAddr1);
 VPUWrite(eBufAddr12, BufAddr2);

 //
 // Initialise read index.
 //
 VPUWrite(eRdIdx, (0<<2));

 //
 // Take VPUIClk out of reset.
 //
 VPUWrite(eEnable, 1);
}

void Term525(void)
{
 //
 // Force VPUIClk into reset.
 //
 VPUWrite(eEnable, 0);
}

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-21

3.10.9 Register Interface
The 4-Kbyte region defines 32-bit registers on 64-bit boundaries as follows:

Offset Name Format
0x000 Enable Enable
0x008 Mode Mode
0x010 SAVPos SAVPos & EAVPos
0x018 EAVPos SAVPos & EAVPos
0x020 BufAddr00 (task 0, index 0) BufAddr[0..1][0..2]
0x028 BufAddr01 (task 0, index 1) BufAddr[0..1][0..2]
0x030 BufAddr02 (task 0, index 2) BufAddr[0..1][0..2]
0x038 BufAddr10 (task 1, index 0) BufAddr[0..1][0..2]
0x040 BufAddr11 (task 1, index 1) BufAddr[0..1][0..2]
0x048 BufAddr12 (task 1, index 2) BufAddr[0..1][0..2]
0x050 RdIdx RdIdx
0x058 WrIdx WrIdx

3.10.9.1 Enable

Reset value = 0.
Read-write access.

Offset Size Name Description
0 1 Enable When 0, VPUIClk is forced into reset.

When 1, VPUIClk is taken out of reset.
1 31 - Reserved.

3.10.9.2 Mode

Reset value = undefined.
Read-write access.

Offset Size Name Description
0 1 - Reserved.
1 1 XVideo 0 = 8-bit video.

1 = 16-bit video.
2 1 SwapData 0 = In 16-bit video, don’t swap the Vid and XVid bytes during active

video.
1 = In 16-bit video, swap the Vid and XVid bytes during active video.

3 1 SkipData 0 = Empty cycles during active video are processed.
1 = Empty cycles during active video are discarded.

4 1 HBStore 0 = Horizontal blanking data is discarded.
1 = Horizontal blanking data is stored.

5 1 VBStore 0 = Vertical blanking data is discarded.
1 = Vertical blanking data is stored.

Input and Output Miranda P10 Programmers Guide

3-22 Proprietary and Confidential 3Dlabs

6 1 Interlaced 0 = Store video source as non-interlaced frames. The video source
can be non-interlaced or interlaced.
1 = Store video source as interlaced frames. The video source must
be interlaced.

7 1 StartField In interlaced video, this is matched against the EAV Field (F) bit to
determine the 1st field in the frame.

8 2 MaxIdx Maximum index:
0 = 1 buffer
1 = 2 buffers
2 = 3 buffers
3 = Reserved (3 buffers)

10 22 - Reserved.

3.10.9.3 SAVPos & EAVPos

Reset value = undefined.
Read-write access.

Offset Size Name Description
0 12 Pos SAV or EAV position, counted from 0 at the start of the horizontal

blanking interval.
12 20 - Reserved.

3.10.9.4 BufAddr[0..1][0..2]

Reset value = undefined.
Read-write access.

Offset Size Name Description
0 25 BufAddr Buffer address aligned to an 8-tile boundary.
25 7 - Reserved.

3.10.9.5 RdIdx

Reset value = undefined.
Read-write access.

Offset Size Name Description
0 2 RdIdx0 Read index (task 0).
2 2 RdIdx1 Read index (task 1).
4 28 - Reserved.

3.10.9.6 WrIdx

Reset value = undefined at chip reset, 0 at VPUIClk reset.
Read-only access.

Miranda P10 Programmers Guide Input and Output

3Dlabs Proprietary and Confidential 3-23

Offset Size Name Description
0 2 WrIdx0 Write index (task 0).
2 2 WrIdx1 Write index (task 1).
4 28 - Reserved.

3.11 Upload Facilities
The upload facilities in P10 are provided by the GPIO Upload DMA Unit, in conjunction
with the Host Out Unit and Pixel Unit.
The Upload DMA Unit can receive arbitrary pixel data from the Pixel Unit and packs it as
8-bit, 16-bit, 24-bit or 32-bit data for transfer to the host by the bus master. Data can be
byte-swapped in any of four different methods as appropriate for the host. Data less than
8 bits in width must be packed by the graphics pipeline prior to reaching this unit.
The Host Out Unit allows upload data to be filtered out of the data stream before reaching
the bus master.

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-1

4
4 Programming Overview

Programming P10 consists of setting up mode and state registers and defining the
programs to run in a handful of programmable units. P10 uses fixed registers for
specialised tasks where the need for dedicated functionality and efficiency outweighs the
need for flexibility. These tend to be grouped into functional units of state registers
controlled by one or two mode registers.
The principal functional groups, both fixed and programmable, and controlling registers,
are described in the Miranda P10 Reference Guide Volume I. The sections following are
concerned with programmability aspects only.
The graphics pipeline can be divided into two major sections which are mapped into the
P10 hardware as shown in the block diagrams in the Glint P10 Reference Guide volume I,
and described below. The major parts of the process are the

• Transform and Lighting group, and

• Texture and Render group.

4.1 Transformation and Lighting

4.1.1 GPIO
Also known as the Current Parameter Unit, This subsystem reads incoming commands
and data on the input FIFO and implements various Vertex index, array and caching
facilities, e.g. glDrawElements(), glArrayElement() and glDrawArrays(). The principal
registers are VertexParameter*, VertexData*, VertexIndexBuffer* and
VertexCacheMode. The group’s main task is to allow a parameter such as a colour or a
texture to be supplied for every vertex even when it is not included in a DMA buffer. This
allows vertices in OpenGL to inherit previously defined parameters without being forced to
supply them on every vertex.

4.1.2 Vertex Shading Unit
The Vertex Shading program:
• takes the typeless input parameters supplied for each vertex,
• combines them in some way with constant data (i.e. a transformation matrix, lighting

parameters, etc.) ,
• writes the results to typed registers.
The Vertex Shader knows only about the vertex it is processing, so any operations which
need topological information such as backface culling or clipping are not handled here.
Input data is typeless as the meaning is defined by the program. However the output
registers are typed because a coordinate is processed differently to a texture or colour
value, for example, in the rasteriser.

Programming Overview Miranda P10 Programmers Guide

4-2 Proprietary and Confidential 3Dlabs

Output data includes:
• output coordinates which have been projected and viewport mapped and
• texture coordinates which have been divided through by the homogeneous w value.
The texture coordinates are written to the rasteriser as eight 4-component vectors (Vec4)
and the interpretation of these 32 values is a function of the Texture Coordinate program.
Similarly colours are written to the rasteriser as eight 4 component vectors and the
interpretation of these 32 values is a function of the Shading program.
The names “texture coordinates” and “colors” are misleading as they are not restricted to
representing this type of data, but could be used to hold a fog value, Fresnel term,
reflection vector, etc. The difference between the two data types are summarized in the
following table:

Function Texture
Coordinates

Colors

Perspective correct
interpolation

Yes no

Clamped No yes in the range 0…1
Plane equation
evaluation

floating point fixed point

Index texture map Yes no

The coordinates are forwarded to the Vertex Machine Unit which monitors the incoming
vertex data and issues geometry cammands to trigger primitive assembly. Primitive
Assembly (Culling, Clipping) is handled by fixed function units described later. The Cull
Unit caches the window coordinates for the 16 vertices and when a Geom* command
arrives it uses the cached window coordinates to test clip against the viewing frustum and,
for triangles, do a back face test.
The result is fed to the Geometry Unit for geometric clipping and rendering setup. The
output is a series of triangles which are passed to the Context Unit and Router to be
allocated to a texture pipe and/or Depth and Stencil Test unit.

4.2 Texture and Rendering
The Texture and Rendering functional group includes Texture Pipes, Depth and Stencil
testing and Pixel Addressing facilities.
Each Texture Pipe contains a programmable Texture Coordinate Unit, a fixed-function
Texture Filter and a programmable Shader Unit

4.2.1 Texture Coordinate Programme
Texturing is handled by a texture coordinate program. The inputs to the program are the
32 plane equations derived from the 32 texture coordinate values generated by the Vertex
Shading program and 32 floating point values in the global registers. All computation is
done using single precision floating point numbers.

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-3

The fragment's screen position is used together with the plane equations to compute the
texture coordinate this fragment needs to access. The perspective division and level of
detail calculation are also done and the results written to four output registers (which hold
u, v, w, lod) to be used by the texture lookup and filtering hardware. Once these registers
have been loaded the texture lookup and filtering is initiated via a command register and
the results of the lookup and filtering operation are loaded into the texel registers in the
Shading program. This process is repeated for all the textures used to colour a fragment
and once the filtered texels have been loaded into the Shading program the Shading
program will be run.
Computed values can be passed directly to the Shading program (to load up the texel
registers) without causing a texture look up. The filtered texel value can also be returned
to the texture coordinate program so feedback or dependent texture operations can be
implemented (i.e. bump mapping).
Fragments can be terminated under program control.
Texture Lookups and Filtering are handled by fixed function units described later.

4.2.2 Shading
This is handled by a shading program. The inputs to the program are the 32 plane
equations derived from the 32 colour values generated by the Vertex Shading program,
the eight 32 bit texel values supplied via the texture coordinate program and 32 byte
values stored in global registers. All the necessary input data is present when the
program is started.
All computations are done using signed 4.8 fixed point numbers and any 8 bit values
(such as a texel colour component) are converted using several different mappings. The
results of a program run are written into the fragment register in the Pixel program.
Typically 4 bytes are written into the fragment register representing R, G, B and A colour
components, however up to 8 bytes of data can be written and it can be used in any way
the Pixel program sees fit.
The shading program calculates the final colour of a fragment so will usually include
Gouraud shading, texture application, fog and alpha testing.

4.2.3 Framebuffer Processing
The framebuffer processing is done in the Pixel program. The Pixel program takes the
fragment colour calculated by the Shading program, data read from the framebuffer and
32 byte values stored in global registers and calculates the colour (or some other) value to
write back into the framebuffer.
All calculations are done using an 8 bit ALU, one component at a time and will normally
include such tasks as dithering, logical ops, alpha blending and plane masking.
The addresses of the framebuffer data to read and write is also under program control to
allow a wide variety of addressing patterns to be implemented (e.g. convolution, multi
sample AA, pattern filling, etc.).
All the programs are written to process a single vertex, fragment or pixel at a time and
some general conventions must be adopted so the data flowing from one program to the
next is assigned some consistent meaning.

Programming Overview Miranda P10 Programmers Guide

4-4 Proprietary and Confidential 3Dlabs

The pixel and fragment programs tend to be quite short, especially the Pixel programs
which are typically only 4 or so instructions long. The vertex programs tend to be the
longest. All the handshaking and protocols between the programs (or indeed with the
fixed function operations) are handled automatically and watchdog timers will prevent an
erroneous program from locking up the chip.

4.2.4 How to draw a Gouraud-shaded triangle
For an example of typical Gouraud shading programs see the discussion of Gouraud
Shading in section 8.

4.3 Fixed mode and state registers
Refer to the Miranda P10 Reference Guide, volume I

4.4 Programmable Units

4.4.1 Data flows among units

4.4.2 Vertex Shading Introduction
The Vertex Shading Unit (VSU) is responsible for all vertex level processing in the chip.
This normally consists of transformation, vertex lighting and texture coordinate generation,
but with the advent of DX8 and OpenGL’s vertex program extensions may also include
more exotic and user-defined operations, such as vertex blending, tessellation, skinning,
etc.
The VSU is comprised of an array of Vertex Processors (VPs), each of which contain an
ALU and work on a single vertex at a time. Each VP has access to an input buffer, an
output buffer and internal storage containing all the data necessary to operate on that
vertex.

4.4.2.1 Input Data

The VSU has 16 Vec4 (vectors consisting of 4 32-bit floating point values) input
parameters. These parameters are typeless – that is their significance is defined by the
program run in the VSU, rather than the name given to them.
Any number of these parameters may be loaded per vertex, and in any order, with the only
restriction being that a defined trigger parameter is sent for each vertex. This trigger
parameter is the switch that closes off the current vertex and starts execution of the VSU
program using the input data already received. The trigger parameter again is typeless,
but is typically the vertex position.
Typeless parameters for vertices, trigger parameter, inheritance, 16 vec 4s. [16 4-
component vectors, typeless because their significance is defined by the invoking program
rather than absolute position. Trigger param. User-defined, not necessarily Position as in
OpenGL.]

4.4.2.2 Output Data

The VSU has 17 Vec4 output parameters, the first 8 are loosely defined as ColourA-H, the
next as TextureA-H, with the Colour* parameters being passed downstream to the

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-5

Shading Unit, and the Texture* parameters being passed to the Texture Coordinate Unit.
Again, these parameters are really typeless, with their significance being defined by the
receiving unit.
The final output parameter contains the window coordinate parameter. This Vec4
contains the viewport-transformed window coordinate in the first 3 values and the
homogenous W value in the 4th. Every VSU program should write this value, but there is
no such requirement to output any of the other parameters.

4.4.2.3 Typed parameters

4.4.2.4 Special parameters

As well as the standard output parameters, the VSU outputs may be defined as special
parameters. These outputs can then be interpreted as point sizes, eye-space vertex
coordinates and user-defined clip plane outcodes by the rest of the geometry pipeline

4.4.2.5 Memory

The VSU has four types of internal storage; the first is instruction memory – enough for
256 instructions. Next is 256 Vec4 (or 1024 floats) of constant, read-only Coefficient
Memory shared between the VPs. Finally, each VP has a 16 Vec4 scratch pad of read-
write memory and an address register which can be used for indirect addressing into the
coefficient memory.

4.4.2.6 Programs act as transfer functions

A VSU program consists of a list of instructions telling the VPs how to operate. The
program is executed by all VPs in parallel and begins when all of the VPs are ready to run.
This usually means that all of them have received a trigger parameter, but execution may
also be triggered by new state data (new program or coefficient data), by a
synchronisation tag or if the output MFIFO is full.
Execution is controlled by a sequencer, which reads each instruction and broadcasts it to
all VPs. The sequencer will continue to operate until it reaches a Stop instruction or until
the watchdog timer of 16K instructions is reached – although the VSU only has 256
instruction registers, as loops and sub-routines are supported there would, without the
watchdog, be potential for an invalid program to be loaded and lock-up the chip.

4.4.2.7 Instruction Set Summary

Each instruction is broken up into fields, defining the operation, the location of the input
data and where to put the results. There are three possible inputs for each instruction,
but only one from the input buffers, one from the coefficient memory and two from the
scratch pad may be defined for a single instruction. The output may be the scratch
registers, the output buffers or the address register.
The following is a table of the instruction format:

Bit No. Name Width Description
0..4 OpCode 5 This field holds the ALU operation. See later for a

description.

Programming Overview Miranda P10 Programmers Guide

4-6 Proprietary and Confidential 3Dlabs

Bit No. Name Width Description
5..6 VectorCount 2 This field holds the number of components in the

vector. The options are:
 0 = one component vector (i.e. a scalar)
 1 = two component vector
 2 = three component vector
 3 = four component vector

7..16 CoeffAddr 10 This field selects the float to read from the coefficient
memory. The address is modified by the
CoeffAddrBase and CoeffDataType fields.

17..22 InVertexAddr 6 This field selects the float to read from the input vertex
registers. The address is modified by the
InVertexAddrBase and InVertexDataType fields.

23..28 ScrAddrA 6 This field selects the float to read from the scratch
register file. This value is srcA data. The address is
modified by the ScrAddrBaseA and ScrDataTypeA
fields.

29..34 ScrAddrB 6 This field selects the float to read from the scratch
register file. This value is srcB data. The address is
modified by the ScrAddrBaseB and ScrDataTypeB
fields.

35..36 ArgA 2 This field selects the argA input to the ALU. The
options are:
 0 = coeff data
 1 = input vertex data
 2 = srcA from the scratch register file
 3 = srcB from the scratch register file

37..38 ArgB 2 This field selects the argB input to the ALU. The
options are:
 0 = coeff data
 1 = input vertex data
 2 = srcA from the scratch register file
 3 = srcB from the scratch register file

39..40 ArgC 2 This field selects the argC input to the ALU. The
options are:
 0 = coeff data
 1 = input vertex data
 2 = srcA from the scratch register file
 3 = srcB from the scratch register file

41..42 ModA 2 This field defines how argA is modified before going
into the ALU. The options are:
 0 = pass
 1 = negate
 2 = absolute
 3 = clamp to zero if negative

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-7

Bit No. Name Width Description
43..44 ModB 2 This field defines how argB is modified before going

into the ALU. The options are:
 0 = pass
 1 = negate
 2 = absolute
 3 = clamp to zero if negative

45..46 CoeffAddrBase 2 This field defines how the coefficient address is
generated. The options are:
 0 = relative (i.e. base + CoeffAddr)
 1 = absolute (i.e. CoeffAddr)
 2 = indirect (i.e. addressReg + CoeffAddr)
 3 = circular
 addr = coeffBase + coeffAddr
 if (addr > coeffEnd)
 addr = coeffOrigin + addr – coeffEnd

47 CoeffDataType 1 This field defines the data type. The options are:
 0 = scalar
 1 = vector

48 InVertexAddrBase 1 This field defines how the input vertex address is
generated. The options are:
 0 = relative (i.e. base + InVertexAddr)
 1 = absolute (i.e. InVertexAddr)

49 InVertexDataType 1 This field defines the data type. The options are:
 0 = scalar
 1 = vector

50 SrcAddrBaseA 1 This field defines how the scratch regiseter A address is
generated. The options are:
 0 = relative (i.e. base + ScrAddrA)
 1 = absolute (i.e. ScrAddrA)

51 ScrDataTypeA 1 This field defines the data type. The options are:
 0 = scalar
 1 = vector

52 SrcAddrBaseB 1 This field defines how the scratch regiseter B address is
generated. The options are:
 0 = relative (i.e. base + ScrAddrB)
 1 = absolute (i.e. ScrAddrB)

53 ScrDataTypeB 1 This field defines the data type. The options are:
 0 = scalar
 1 = vector

Programming Overview Miranda P10 Programmers Guide

4-8 Proprietary and Confidential 3Dlabs

Bit No. Name Width Description
54..61 DestAddr 8 This field holds the address to update with the results of

an ALU operation. The address (after modification by
the DestAddrBase) is decoded into the following
ranges:
 0…63 = scratch register
 64…95 = ColourA[r, g, b, a]…ColourH[r, g, b, a]
 96…127 = TextureCoordA[s, t, r, q]…
TextureCooredH[s, t, r, q]
 128…130 = window coordinate
 131 = homogenous W
 132 = address register
 133…256 = no write
Note the ColourA…ColourH parameters are
automatically clamped when used downstream.
The interpretation of the ColourA…ColourH and
TextureCoordA…TextureCoordH values is down to
the programs running in the Texture Coordinate Unit
and the Shading Unit.

62 DestAddrBase 1 This field defines how the destination address is
generated. The options are:
 0 = relative (i.e. base + DestAddr)
 1 = absolute (i.e. DestAddr)

63 DestDataType 1 This field defines the data type. The options are:
 0 = scalar
 1 = vector

64..67 Sequencer 4 This field holds the sequencer operation. See later for a
description.

68..76 SeqData 9 This field holds data mainly for sequencer related
operations such as jump or subroutine addresses, loop
counter values.
It can also supply a value to be loaded or added to the
base registers. Instruction addresses can be absolute (0)
or relative (1) and the most significant bit controls this.

The ALU has 22 instructions as follows (d is destination, s0, s1 and s2 are the three
sources):

Value Name Time Description
0 Move 1 d = s0
1 Add 2 d = s0 + s1
2 MAdd 4 d = s0 * s1 + s2
3 Mul 2 d = s0 * s1
4 Min 2 d = Min (s0, s1)
5 Max 2 d = Max (s0, s1)

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-9

Value Name Time Description
6 SLT 2 if (s0 < s1) d = 1.0 else d = 0.0
7 SGE 2 if (s0 >= s1) d = 1.0 else d = 0.0
8 Fract 2 d = fractional part of s0
9 Trunc 1 d = integer part of s0 (as a floating point number)
10 Dot 2/4 d = s0 * s1 for first component, else d = s0 * s1 + s2
11 ShiftSign 1 d = s0 << 1 | s1.sign allows user clip outcode to be build up
12 Recip 9 d = 1.0 / s0, returns maximum positive number if s0 = 0.0
13 Div 9 d = s1 / s0, returns maximum positive or negative number if s0

= 0.0
14 RSqrt 1 d = 1.0 / sqrt (s0) (10 bits precision)
15 ALog 2 d = 2s0

 (10 bits precision)
16 Log 3 d = log2 (s0) (10 bit precision)
17 Exponent 3 d = IntToFloat (s0.e - 127)
18 Mantissa 3 d = IntToFloat (1.0 + s0.m)
19 IntToFloat 3 d = IntToFloat (s0)
20 FloatToInt 3 d = FloatToInt (s0)
21 HRecip 8 d = 1.0 / s0, returns 1.0 if |s0| < epsilon. epsilon = 2-120

Each instruction takes a single cycle to execute however listed above are times
associated with each instruction, which is the number of cycles before the result is
available to subsequent instructions. Additional dependencies exist in that a Div, or Recip
instruction will occupy the Multiplier for 6 cycles and an Add has to wait until after a MAdd
has completed.
The Sequencer has 13 instructions as follows:

Value Name Description
0 Inc The next sequencer address is the current sequencer address + 1.
1 Jump The next sequencer address is the address in the seqData field. The

address in the seqData field is an absolute address if the most
significant bit is clear, or a relative address if it is set.

2
3

Loop0
Loop1

The loop counter 0 or 1 is loaded with the contents of the seqData
field. The maximum loop count is 127 and is primarily intended for
looping around lights. The next sequencer address is the current
sequencer address + 1.

4
5

DJNZ0
DJNZ1

The loop counter 0 or 1 is decremented and if the result is zero the
next sequencer address is the current sequencer address + 1,
otherwise the address in the seqData field is used as the next
sequencer address. The seqData address can be absolute or relative.

6 Call The current address + 1 is pushed on to the return stack and the
next sequencer address is the address in the seqData field. The stack
is only four deep and there is no protection against overflow. The
seqData address can be absolute or relative.

Programming Overview Miranda P10 Programmers Guide

4-10 Proprietary and Confidential 3Dlabs

Value Name Description
7 Return The next sequencer address is taken from the return stack and the

stack is popped. The stack is only four deep and there is no
protection against underflow.

8 Stop This terminates the program and implements the necessary
handshaking to accept more vertex data and pass any results into the
pipeline for culling and clipping.

9 IncCoeffBaseReg The coeff address register used for relative addressing has the
sequencer data field added to it. The sequencer data is sign extended
before the addition. The next sequencer address is the current
sequencer address + 1.

10 LoadCoeffBaseR
eg

The coeff address register used for relative addressing has the
sequencer data field loaded into it. The sequencer data is first
multiplied by 2 before loading. The next sequencer address is the
current sequencer address + 1.

11 LoadCoeffOrigin
Reg

The coeff origin register used for circular addressing has the
sequencer data field loaded into it. The sequencer data is first
multiplied by 2 before loading. The next sequencer address is the
current sequencer address + 1.

12 LoadCoeffEndRe
g

The coeff end register used for circular addressing has the sequencer
data field loaded into it. The sequencer data is first multiplied by 2
before loading. The next sequencer address is the current sequencer
address + 1.

The ALU is a scalar processor, and addresses the memory locations in terms of floats
(rather than Vec4s), vector operations are performed simply by setting the vector count
field in the instruction and any relevant DataType fields, e.g.:

Reg[4+] = Mul3(Coeff[36+], A[8]);
…multiplies the values in coefficient 36, 37 and 38 by the value in scratch register 8 and
places the results in scratch registers 4, 5 and 6. This instruction is really 3 instructions,
controlled by the sequencer and will take the same amount of time to run as three
separate Mul instructions.

4.4.2.8 Vertex Transformation

There are four basic transformations. They are:
Transforming by a 4x4 matrix (e.g. by the ModelView matrix to get the eye-space
coordinate of the vertex or by the ModelViewProjection matrix to get the projected vertex):

reg[eyeVertex+] = Mul4 (in[pos_x], coeff[MVMat0+]);
reg[eyeVertex+] = MAdd4 (in[pos_y], coeff[MVMat4+],
reg[eyeVertex+]);
reg[eyeVertex+] = MAdd4 (in[pos_z], coeff[MVMat8+],
reg[eyeVertex+]);

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-11

reg[eyeVertex+] = MAdd4 (in[pos_w], coeff[MVMat12+],
reg[eyeVertex+]);

The 3-space eye vertex is required for local lighting and is derived by:

reg[oneOverEyeW] = Recip (reg[eyeVertex_w]);
reg[eyeVertex3+] = Mul3 (reg[eyeVertex+],
reg[oneOverEyeW]);

Similarly the projected vertex is the input position multiplied by the ModelViewProjection
matrix. The 1/w value can be found from the projected vertex by:

reg[oneOverW] = HRecip (reg[projVertex_w]);
(see later why HRecip is used instead of Recip)
Transforming the normal by the Normal matrix. This is done the by code:

reg[normal+) = Mul3 (in[normal_x], coeff[NMat0+]);
reg[normal+) = MAdd3 (in[normal_y], coeff[NMat3+],
reg[normal+]);
reg[normal+) = MAdd3 (in[normal_z], coeff[NMat6+],
reg[normal+]);

If the normal needs to be normalised then the code to do this is:

reg[magSquared] = Dot3 (reg[normal+], reg[normal+]);
reg[invMag] = RSqrt (reg[magSquared]);
reg[normal+] = Mul3 (reg[normal+], reg[invMag]);

The RSqrt instruction just returns the value from the seed table and this can be refined
with one iteration of the Newton Raphson formula, which extends the approximation result
from 10 to 20 bits:

r = (3.0 - r * r * x) * r * 0.5;

The more accurate normalisation is:

reg[magSquared] = Dot3 (reg[normal+], reg[normal+]);
reg[r] = RSqrt (reg[magSquared]);
reg[rr] = Mul (reg[r], reg[r]);
reg[r5] = Mul (reg[r], coeff[ConstantHalf]);
reg[rrx] = Mul (reg[rr], reg[magSquared]);
reg[rrx] = Add (coeff[ConstantThree], -reg[rrx]);
reg[invMag] = Mul (reg[rrx], reg[r5]);
reg[normal+] = Mul3 (reg[normal+], reg[invMag]);

Programming Overview Miranda P10 Programmers Guide

4-12 Proprietary and Confidential 3Dlabs

4.4.3 Texture Co-ordinate Unit (Introduction)
This section describes the assembly language and programming features of the Texture
Coordinate Unit. Refer to Texture coordinate generation (s.8.5.1) for details on the exact
register setup to load programs into this unit.
The Texture Coordinate Unit is in charge of producing the texture coordinate values so the
given texel can be fetched from texture memory and passed on to the rest of the texture
pipeline.
For such a task, it receives the per vertex interpolated parameters (OutTexture
CoordA..F), calculated in the Vertex Shading Unit. For each fragment of the current
primitive, the same preloaded program is triggered and executed. The program can last
for 2048 core cycles and have up to 128 instructions (a watchdog safety mechanism
aborts programs running for more than 2048 cycles).
Although the main purpose of this unit is to generate perspective corrected texture
coordinates, its programmable nature allows for more advanced techniques such as:
• Dependent textures Bump Environment Mapping (s.8.5.3)
• Shadow textures
• Procedural textures
• Texture format conversion or automatic mipmap generation at texture download time

MIPmap generation (s.7.2)
• Multitap/anisotropic texture filtering

4.4.3.1 Input Data

The unit receives external data from several different sources:
• Feedback data (be it an external stream or data coming from the loopback channel).
• 32 read only Global Registers.
• Interpolated data like the sample position inside the plane (X,Y), plane equations

(PStart) and derivatives (dPdx, dPdy).
• Texture scale data (PlaneScale register)
The unit works natively with 32 bit floating point numbers, so any kind of integer data will
have to be converted with the IntToFloat operation, prior to doing any calculation with
it (note that the scale operand is assumed to be integer and doesn’t need to be
converted).

Feedback data
The Feedback register allows to read data either from an external stream coming from
the host (through the RasteriseRectangle command with host-supplied data) or from a
loopback channel that allows the Texture Coordinate Unit to consume texels from
requests originated by the program. Those program requests are done by means of the
Command special field of an instruction with the enable-feedback argument set to 1.

You can see the Feedback register as a read-only 32bit datum. To read it you must
supply as arguments:
• The size of the data to read 8, 16, 24 or 32 bits.
• The position of the data inside the register from 0, 8, 16 or 24.
• Whether to signextend the data or not using the keywords Sign or Zero,

respectively.

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-13

For example Feedback(8,24,Zero) will use as source operand the 8 bits of the last
feedback transfer beginning on bit 24 and zero-extending them. Feedback operand is
normally used in conjunction with IntToFloat instruction.

The Feedback register is automatically written when data is received. In order the chip not
to overwrite feedback data until the program has finished consuming it, or the program not
to read the feedback data before it has actually been received, the sequencers
FinishedWithFeedbackData or WaitForFeedbackData can be appended to the
instruction to signal the consumption or the need to wait for feedback data.

Global registers
The global register set is composed by 16 pairs of read-only 32bit floating-point numbers.
Only registers from the same pair can be accessed in the same operation, so it may be
worth planning the arrangement of these global registers with regard to their usage in the
program.
The global registers are represented as Global0[n] or Global1[n] in the assembler syntax,
the first form referring to the lower 32 bit word of the pair and the second to the upper 32
bit word of the pair, and being n a number from 0 to 15.
Global registers can be addressed relative to the global register base (as set by the
special instruction field GlobalBase or PlaneGlobalBase). In this case, the assembler
syntax is to precede the register index with @. For example Global0[@1] will use the low
32 bit word register at the index given by the global register base plus 1.
This relative addressing allows easy subrutinisation and parameterization of code. The
interpolated plane equations and derivatives offer a similar facility.
The global registers can also be used to store the tex-id (texture ID looked up) and dest-
reg (Shading Unit registers loaded with the texel data) to use in a Command cfifo –
register field of an instruction.

Interpolated data
The architecture uses a plane equation approach to calculate any interpolated parameter.
Some registers in the Texture Coordinate Unit allow accessing that interpolation data.
A parameter to be bilineally interpolated (in this case, texture coordinates) can be seen as
a plane equation
p = a·x + b·y + c
where
• x and y are the current sample point of the plane, accessible from the registers X and

Y.
• a and b are the plane partial derivatives respect to x and y, stored in the registers

dPdx[n] and dPdy[n]
• c is a constant starting value, stored in the register PStart[n].
All those registers are read-only and can be used as source operands for Texture
Coordinate Unit operations.
Note that PStart[n], dPdx[n] and dPdy[n] are arrays of values, n ranging from 0 to
7, one for each OutTextureCoord parameter as generated in the Vertex Shading Unit for
the current primitive being rasterised.

Programming Overview Miranda P10 Programmers Guide

4-14 Proprietary and Confidential 3Dlabs

A PlaneBase register allows relative addressing of the plane equation derivatives, much
in the same way it’s done for global registers. This base register can be loaded with the
PlaneBase or PlaneGlobalBase special fields of the instruction. The derivatives can then
be addressed by prepending a @ to the number, i.e dPdx[@1], and the net result will be
that of addressing the plane equation given by the number plus the current PlaneBase
value.
The usefulness of this relative addressing is evidenced when using subroutines. A good
example of this is the Perspective corrected & mipmapped 2D texture coordinate function
that can be found in section Perspective corrected 2Dtexture Coordinate example
(s.4.3.3.6)
Whenever a derivative is used as the source operand for any operation, we can store both
derivatives of the plane being addressed in the special registers dPdxSaved and
dPdySaved by means of the save instruction field.

Texture scale register
Although normally the calculation of texture coordinates is independent of the size of the
texture, for LOD calculation purposes the size of the texture is needed.
This size can be supplied in the 4bit read-only register set PlaneScale[n], n ranging
from 0 to 31 (thus having four scales for each texture ID).
Note that if LOD is to be used, the texture must be power of two, so what this register
normally holds is the logarithm of the dimension.
The register set must be loaded beforehand by the programmer and actually nothing stops
the programmer from loading other kind of integer data in this register and using it for
other purposes than scaling the LOD calculations.
This register set shares the same relative addressing scheme as the plane derivatives
interpolation parameters, i.e. setting PlaneBase or PlaneGlobalBase values allows to
use relative addressing in the form of PlaneScale[@n].

4.4.3.2 Output Data (Texture coordinates, shading parameters)

This unit can either:

• Output the texture coordinates to the texture fetch units (filtertexture mode) in order to
initiate a texel lookup. The texel conveniently formatted and filtered will eventually be
written into the texture input registers of the Shading Unit.

• Pass the calculated data directly to the Shading Unit (passthrough mode) useful, for
example, for procedurally generated textures.

The output mode is selected by the command parameter of the Command cfifo-register
instruction field present in the program.
The unit communicates to other units through a fifo, represented by the C[n] registers in
the assembler syntax, n going from 0 to 3. For maximum efficiency each of these registers
should be only written once. Note that no external action (texture lookup or output
passthrough) is triggered until the Command instruction is issued.

Filtertexture mode

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-15

In this mode the four outputs C[0..3]are used as texture coordinates by the Texture
Index Unit to perform a texture lookup:

• C[0] holds the S coordinate

• C[1] holds the T coordinate

• C[2] holds the R coordinate (for three dimensional textures)

• C[3] holds the LOD value and cubemap face (both are initialised to 0 by default and
can be loaded by writing to the LOD pseudo register and using the CubeSort
instruction, respectively).

C[0..2] must store wrapped values (as opposed to true floating point values). The
wrapped value, suitable for texture indexing, is computed by using the Wrap operation
when writing to the C[0..2] register.
To store the cubemap and LOD from their specific registers into C[3], suffices writing the
LOD register into C[3] (the write of the cubemap face is implicit in that instruction).
Only the needed outputs must be written, i.e., if the Texture Index Unit is setup to access
non mipmapped 1D textures (as shown In Texture Pipe Method (s.7.1.4.1), there’s no
need to write to outputs C[1..3] in the program.

Passthrough mode
In this mode the four outputs C[0..3] are passed directly to the Shading Unit, so care
must be taken of converting the floating point numbers to integer numbers with the
FloatToInt operation, as expected by the Shading Unit.

The exact Shading Unit set of four contiguous texture registers that will receive the four
outputs is specified by the dest-reg parameter of the Command instruction.

4.4.3.3 Temporary storage

The Texture Coordinate Unit was designed to be flexible for future uses but also to be
efficient for the current usage.
It’s because of the latter, that this unit has a lot of specific-purpose registers, in order to
efficiently calculate texture coordinates the classic way.

Constants
The only floating point constant values allowed in an operation are 0.0 and 1.0,
represented in the assembler syntax by the keywords Zero and One, respectively.
If other constants are needed by the program, they may be preloaded into global registers.

Working registers
A set of 16 32bit floating point read-write registers allows storing temporary results.
These are represented in the assembler syntax as W[n] when they appear as destination
registers or as A[n] or B[n] when they appear as source registers, n ranging from 0 to
15.
The reasoning behind the A and B naming convention is that the working register set has
two input ports, so you must tell the assembler what input port to use when reading a

Programming Overview Miranda P10 Programmers Guide

4-16 Proprietary and Confidential 3Dlabs

register from this set. The implication is that as many as two different working registers
can be read in the same operation, one appearing as A and the other as B (although you
can read multiple times the same register as long as the operation format supports it).
A register can act both as source and destination of an operation, in that case the source
value is the value of the register before the operation took place.
The first nine registers support a form of indirect addressing by preceding the register
number with the % sign. This feature is normally used for cubemapping and setup by
calling the CubeSort operation (see Bump Environment Mapping (s.8.5.3) for an
example). If in a given operation one working register is used with indirect addressing, all
the working registers must be used with indirect addressing as well.

Level of detail related registers
Two registers allow fast calculation of analytic level of detail or LOD (refer to Texture
Coordinate Generation (s.8.5.1) for the theoretical explanation of LOD calculation).

• LOD: This register is written by assigning values to the LoadMax, LoadMag,
MergeMax and MergeMag special fields of the instruction. This register can be read
by using LOD as the source of an operation or can be written to C[3] using the C-Fifo
register instruction field. This register is read as a 10.8 signed fixed point.

• Q2: This register stores a 32bit floating point value that will be used in the calculation
implied when writing to the LoadMax, LoadMag, MergeMax, MergeMag special fields
of the instruction. Note that this register must be loaded (by simply writing to Q2)
before writing to those fields. This register cannot be read directly.

Flow control registers
• Two 8-bit counters, loaded via LoadCounter sequencer and decremented via DJNZ

sequencer. These registers are addressed by using its index 0 or 1 as parameter to
the aforementioned sequencers. These registers cannot be read directly.

• The flag register is updated whenever the update-flag field is present in the
instruction, allowing to overwrite its value or to combined its value with the result of
the current operation being positive or zero. The flag can also be used to mask out
fragments from the current block with the DoneAnd or KillFragments sequencers.
This register cannot be read directly.

Miscellaneous registers
There are two more specific purpose registers:

• ScaleReg is a 5bit read-write sign=, which makes the integer log2 of the operation’s
result to be written into this register.

• DivResult 32bit floating point read-write register that implicitly stores the result of the
last division performed. Can be loaded with user-defined values via LoadDivResult
operation.

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-17

4.4.3.4 Programs act as transfer functions (data types – bytes, multi-byte arithmetic)

The unit works as a SIMD machine simultaneously on 4x4 fragment regions of the current
primitive. A fragment mask disables the output of any of the 16 processors calculating
results for fragments in the current 4x4 block but outside the primitive.

• The texture coordinate unit program can also modify that fragment mask by setting
the mask out value in the flag register and using KillTex or DoneAnd sequencers,
thus allowing per pixel and per texture masking effects (the Shading Unit has a similar
mechanism as explained in Programs act as transfer functions (s.4.3.4.4).

The SIMD nature of this unit remains hidden to the programmer most of the time but for
conditional sequencers (JumpTrue, JumpFalse), where the need of a unique SIMD flow
of execution for all the fragments in the block becomes evident.

4.4.3.5 Instruction Set Summary

This section describes the assembler syntax used by the tools. For a more precise BNF
notation of the syntax and the codification of each instruction into bitfields, refer to the
Texture Coordinate Unit Assembler & Disassembler Manual.
One program instruction is composed of several fields:
{c-fifo register} {special} {update-flag} {local register} {operation} {sequencer} {save} “;”

Only the operation field is mandatory, all the other fields are optional.
The instruction set is not completely orthogonal, for example some combinations of
operation and special fields are not allowed. Those singularities are explained in the
assembler documentation and are intrinsic to the bitfield instruction format, which
explanation is beyond the scope of this programming guide.
An explanation of each field follows.

C-Fifo register
This field determines if there will be any write to the c-fifo or if any command will be sent
to the texture fetch units or to the Shading Unit.
The possible values of this field are:

Expression Meaning
C[0] = The result value of the operation is written into the fifo entry.

This is normally the S coordinate for filtertexture commands.
C[1] = The result value of the operation is written into the fifo entry.

This is normally the T coordinate for filtertexture commands.
C[2] = The result value of the operation is written into the fifo entry.

This is normally the R coordinate for filtertexture commands.
C[3] = LOD The LOD value and the cubemap face are written into the fifo

entry.
Command(command args) Triggers the texture lookup or direct passthrough of c-fifo

contents to the Shading Unit (see below for full explanation on
arguments)

Programming Overview Miranda P10 Programmers Guide

4-18 Proprietary and Confidential 3Dlabs

command args are in the form
command, tex-id, dest-reg, load-shading, enable-feedback, prog
where each field can take the following values:

• command: This field selects the command that will be executed from:
o FilterTexture: The texel lookup on texture tex-id will occur and the

RGBA results of the lookup will be copied into the Shading Unit texture
registers, as specified by dest-reg and load-shading.

o PassThru2: The 16 least significative bits of C[0] are copied into the two
first Shading Unit texture registers of the dest-reg set (least significative byte
of C[0] into the first register, most significative into the second), and the 16
least significative bits of C[1] into the two second (least significative byte of
C[1] into the third register, most significative into the fourth).

o PassThru4: Each Shading Unit texture register of the set given by dest-reg
is loaded with the lower byte of each c-fifo register.

• tex-id: integer from 0 to 7 that selects the texture ID that will be looked up.

• dest-reg: integer from 0 to 7 that selects the set of four consecutive texture Shading
Unit registers that will receive the texel or passthrough data.

• load-shading: 0 or 1 indicating whether to send the effects of the command (texel
lookup or c-fifo contents) to the Shading Unit texture registers or not.

• enable-feedback: 0 or 1 indicating whether to loopback the texture lookup back to the
Texture Coordinate Unit. In that case, the texel can be read in the Feedback register.

• prog: This field specifies the Shading Unit program entry point that will be used (see
Start Addresses for Tile Programs (s.5.5.6) for an explanation on multi entry point
programs). The possible values are Default, First, Middle or Last.

A variant of command args that allows reading tex-id and dest-reg from a global register
exists in the form of
command, global, load-shading, enable-feedback, prog
where

• global: Global0[n]: tex-id and dest-reg are read from bits 0..2 and 3..5 respectively
of the lower word of the given global register.

Finally, if the texture given by tex-id is a 3D texture and mipmap linear (linear minification
filtering) is used, dest-reg least significative bit selects between the high level of detail
mipmap and the low level of detail mipmap. See Mipmap linear 3D textures for an
example of this usage.

Special

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-19

Expression Meaning

GlobalBase(gbase) Loads the global registers’ base register for
relative global register addressing. gbase is
a number from 0 to 31.

LoadMag = For an operation result r, it loads

())2(log*2)(log 22 Qr − into the LOD
register

LoadMax = For an operation result r, it loads
())2(log*2)(log 22 Qr − into the LOD
register

MergeMag = Loads the LOD register with the maximum
between the current LOD register value and
())2(log*2)(log 22 Qr − .

MergeMax = Loads the LOD register with the maximum
between the current LOD register value and
())2(log*2)(log 22 Qr − .

PlaneBase(pbase) Loads the plane base register for relative
PStart, Pdx, Pdy and PlaneScale
addressing. pbase is a number from 0 to 31

PlaneGlobalBase(pbase,gbase
)

Loads both global register and
plane/derivatives base register for relative
addressing. pbase and gbase are numbers
from 0 to 31.

Q2 = Loads the result of the operation into the Q2
register. Typically used as preliminary step to
LOD calculation (either using magnitude or
maximum techniques).

ScaleReg = Loads the scale register with the exponent of
the result value. Typically used with a
FloatToInt operation.

Update-flag
By default the flag holds its previous value. The following expressions allow updating the
flag depending on the result of the current operation (zero or positive) and the current
value of the flag.

Expression Meaning

Programming Overview Miranda P10 Programmers Guide

4-20 Proprietary and Confidential 3Dlabs

Flag = P Sets the flag to true if the result of this instruction
is positive (zero or greater than zero).

Flag = Z

Sets the flag to true if the result of this instruction
is zero.

Flag &= P Ands the current value of the flag with the result
of the operation being positive.

Flag &= Z Ands the current value of the flag with the result
of the operation being zero.

Flag |= P Ors the current value of the flag with the result of
the operation being positive.

Flag |= Z Ors the current value of the flag with the result of
the operation being zero.

Local register
The result of an operation can be stored in a local register.

Expression Meaning

W[uint4] = Loads the result value of the operation into the
given working register.

W[uint4.0] = Conditionally loads the result value into the given
working register if the current flag value is 0.

W[uint4.1] = Conditionally loads the result value into the given
working register if the current flag value is 1.

Operations
The operation field determines the result that will be calculated.
Some of the operations take more than one cycle to be executed, in that case if the next
instruction depends on the result of the current instruction and stores its result in a
working register, the next instruction will stall until the current has finished calculating the
result.

Expression Cycles Meaning

AMax(A,B) 1 if (|A| > |B|) r = A else r = B
AnisoRatio(A,B) 1 if (A/B <= 4.0) r = 2.0

if (A/B < 8.0) r = 4.0
if (A/B > 8.0) r = 8.0

CubeSort(A,B,C) 1 Sort (A,B,C) and set up face number and indirect addressing.
r = 0.0

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-21

Expression Cycles Meaning

Div(A) 7 divResult = A/B, accurate to 24 bits, r = 0
DivLP(A) 5 divResult = A/B, accurate to 14 bits, r = 0
FloatToInt(A) 1 r = integer(A)
Fract(A) 1 r = Fraction of (A)
IntToFloat(A) 1 r = Float(A)
LoadDivResult(A) 1 divResult = A, r = 0
MAdd(A,B,C,D) 3 r = A*B + C*D
Max(A,B) 1 if (A>B) r = A else r = B
Min(A,B) 1 if (A>B) r = B else r = A
MSub(A,B,C,D) 3 r = A*B – C*D
Select(A,B) 1 if (flag) r = A else r = B
Wrap(A,B) 1 r = Fract(A*B)

set flags if:
 (A*B) > 1.0
 (A*B) is odd
 (A*B) is < 0.0

All the operations have a final optional scale parameter, in order to scale them by an
integer power of two.

Operands
Each operand A, B, C, D and scale is restricted to the following values:
• A : A[n], Zero, One, dPdx[n], dPdx[n], dPdy[n], PStart[n], DivResult,

Feedback(size, position, signextend)
• B: A[n], B[n], Zero, One, Global0[n], Global1[n], X
• C: A[n], B[n], dPdx[n], dPdy[n], dPdxSaved, dPdySaved
• D: B[n], Zero, One, Global0[n], Global1[n], Y, LOD
• Scale: PlaneScale[n], sint5, ScaleReg, -ScaleReg
sint5 stands for 5bit integer number with sign.

Sequence control
The sequencer field determines which instruction will be executed after this one.

Expression Meaning

Programming Overview Miranda P10 Programmers Guide

4-22 Proprietary and Confidential 3Dlabs

Expression Meaning

Call(addr) The current instruction address + 1 is written to
the stack. The next instruction will be the one at
addr.
The address stack can be popped with the
Return sequencer.

DJNZ(loop-id, addr) Decrements the given counter. The next
instruction is the given address if the counter is
not zero or the current address + 1 otherwise.

Done Signals the end of the program. The unit will
reset its internal state and prepare to execute the
first instruction of the program on the next batch
of data.

DoneAnd Signals the end of the program and masks the
tilemask with the current flag value.

FinishedWithFeedbackData Indicates that the program no longer uses the
current feedback data and that the feedback
registers can be loaded with more data.

Increment Go to the current instruction + 1 (default value)
Jump(addr) Sets addr to be the next instruction.
JumpFalse(cc, addr) If the And or the Or (as specified by cc) of all the

fragment flags is false, sets addr to be the next
instruction.

JumpTrue(cc, addr) If the And or the Or (as specified by cc) of all the
fragment flags is true, sets addr to be the next
instruction.

KillFragments Same as DoneAnd, but allowing the program to
continue.

LoadCounter(loop-id, uint8) Loads one of the two 8-bit counters with the uint8
value.

Return(addr) Pops the address in the stack and makes that
the next instruction address.
addr can be pushed onto the stack with the Call
sequencer.

WaitForFeedbackData Stall until the feedback registers have received
the feedback data.

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-23

The instruction counter wraps around, so any increment beyond the maximum number of
instructions will still be valid.
The addresses are labels or 8bit numbers. They can be absolute or relative (if preceded
by @), in which case the destination address is the current instruction counter plus the
specified address.
The cc operand can be And or Or.
The address stack is 4 entries deep and there is no underflow or overflow control.

Save
By appending SavedP to the instruction, the derivatives currently being accessed as
operands in the current operation are saved away in the dPdxSaved and dPdySaved
registers.

4.4.3.6 Examples

This section contains some commented examples ranging from the simplest 2D non-
perspective corrected texture coordinate generation program, to the most advanced
techniques.
The supplied assembler allows defining named constants so, throughout the examples
and for clarity’s sake, we refer to several constants defined as follows:

// Constants to access plane equation, derivatives,
// C-Fifo and working registers
Define(Q,3)
Define(S,0)
Define(T,1)
Define(R,2)

// Defines for “Command” instruction
Define(DoLoadShade, 1)
Define(NoLoadShade, 0)
Define(NoFeedback,0)
Define(DoFeedback, 1)
Define(LoResTexture, 0)
Define(HiResTexture, 1)

// Handy defines for accessing external plane equation and
// derivatives in multi stage programs
Define(S0,0)
Define(T0,1)
Define(R0,2)
Define(Q0,3)
Define(S1,4)
Define(T1,5)
Define(R1,6)
Define(Q1,7)

Programming Overview Miranda P10 Programmers Guide

4-24 Proprietary and Confidential 3Dlabs

// Temporals for MIPMAPLINEAR 3D textures
// (we can overwrite Q,S,T,R, dsdx, dsdy, dtdx, dtdy)
Define(HiRed, 0) // High level of detail texture
Define(HiGreen,1)
Define(HiBlue,2)
Define(HiAlpha,3)
Define(FifoRed, 0)
Define(FifoGreen, 1)
Define(FifoBlue, 2)
Define(FifoAlpha, 3)
Define(LoRed,4) // Low level of detail texture
Define(LoGreen,5)
Define(LoBlue,6)
Define(LoAlpha,7)
Define(NegativeLOD, 8) // Temporaries to extract the lod
Define(PositiveLOD, 9)
Define(Temp, 10)

Non-perspective corrected 2D texture coordinate program
One of the simplest programs we can write is the one that produces non-perspective
corrected 2D texture coordinates:

// Program without perspective correction
// If used, must be given non-perspective corrected coords!
Program(TCU_VANILLA,0x00)
 // W[S] will hold S texture coordinate
 W[S]= MAdd(dPdx[S],X,dPdy[S],Y);
 // W[T] will hold T texture coordinate
 W[T]= MAdd(dPdx[T],X,dPdy[T],Y);

 // Because the next instruction accesses W[S], there
// will be a one cycle stall here
 W[S]= MAdd(PStart[S],One,B[S],One);
 W[T]= MAdd(PStart[T],One,B[T],One);

 // Convert the coordinates to wrapped mode
// and write to fifo
// There’s no stall here because we write to the fifo
 C[S]= Wrap(A[S],One);
 C[T]= Wrap(A[T],One);
 // FloatToInt(One) acts as a NOP
 Command(FilterTexture,0,0,DoLoadShade,NoFeedback,Default) FloatToInt(One);

The net result of this program is that

• (PStart[S] + dPdx[S]*X + dPdy[S]*Y) is used as S texture coordinate

• (PStart[T] + dPdx[T]*X + dPdy[T]*Y) is used as T texture coordinate

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-25

• A lookup of texture ID 0 is issued using those texture coordinates, and its results are
sent to the first register set of the Shading Unit (registers T[0..3]).

Filtering of the texel is performed automatically by the Texture Index Unit, as specified in
the TextureIndexMode register and described in @@@
The Command instruction is a bit peculiar: because the operation field is mandatory and
there’s no NOP operation in the instruction set, we use a dummy FloatToInt(One)
operation that acts as a NOP. Ideally, we would pair the Command instruction with a
useful operation, but in this case we cannot do it, as it has to be the last instruction of this
block.
Note how texture coordinate calculations are interleaved to minimize the number of stalls.

Perspective corrected 2D texture coordinate program
Next in the step of complexity is the perspective corrected version: Because 3D to 2D
space conversion implies a division by the distance from the primitive to the viewer,
lineally interpolating the texture coordinates is wrong and produces well-known texture
swimming effects (unless the polygon is completely facing the viewer).
What we need is a hyperbolic interpolation. This is achieved by dividing the texture
coordinates by the Q texture coordinate, in what is normally called perspective correction.

Program(TCU_PERSP_CORRECT_2D,0x00)
W[Q] = MAdd(dPdx[Q], X, dPdy[Q], Y);
 W[S] = MAdd(dPdx[S], X, dPdy[S], Y);
 W[T] = MAdd(dPdx[T], X, dPdy[T], Y);

 W[Q] = MAdd(PStart[Q], One, B[Q], One);
 W[S] = MAdd(PStart[S], One, B[S], One);
 W[T] = MAdd(PStart[T], One, B[T], One);

 // Begin to do the async division
 DivLP(One, B[Q]);

 // Perspective correct
 // Note there’s no stall when accessing DivResult
// because the result is written to c-fifo
 C[S] = Wrap(DivResult, B[S]);
 C[T] = Wrap(DivResult, B[T]);
 // Send to the texel fetch units
Command(FilterTexture,0,0,DoLoadShade,NoFeedback,Default) FloatToInt(One);

There are three changes from the previous program:

• We now calculate the value of the Q coordinate, the same way we do for S and T.
Note that interleaving the calculation of Q coordinate with S and T, has removed the
stall (we now use that cycle to calculate the Q value).

• We now calculate the reciprocal of Q and store into the DivResult register.

• When using the Wrap operation, we now factor DivResult into the wrapping.

Programming Overview Miranda P10 Programmers Guide

4-26 Proprietary and Confidential 3Dlabs

Perspective corrected & mipmapped 2D texture coordinate program
See Texture coord generation (s.8.5.1) for the theory behind the LOD calculation:

Program(TCU_PERSP_CORRECT_2D_MIPMAP_MAX, 0x00)
 W[Q] = MAdd(dPdx[Q], X, dPdy[Q], Y) SavedP;
 W[S] = MAdd(dPdx[S], X, dPdy[S], Y);
 W[T] = MAdd(dPdx[T], X, dPdy[T], Y);

 Q2 = W[Q] = MAdd(PStart[Q], One, B[Q], One);
 W[S] = MAdd(PStart[S], One, B[S], One);
 W[T] = MAdd(PStart[T], One, B[T], One);

 // Begin to do the async division
 DivLP(One, B[Q]);

 // Calculate derivatives for LOD.
 LoadMax = MSub(dPdx[S], A[Q], dPdxSaved, B[S], PlaneScale[S]);
 MergeMax = MSub(dPdy[T], A[Q], dPdySaved, B[T], PlaneScale[T]);
 MergeMax = MSub(dPdx[S], A[Q], dPdxSaved, B[S], PlaneScale[S]);
 MergeMax = MSub(dPdy[T], A[Q], dPdySaved, B[T], PlaneScale[T]);

 // Perspective correct
 C[S] = Wrap(DivResult, B[S]);
 C[T] = Wrap(DivResult, B[T]);
 // Load the LOD value into the fifo
 C[3] = LOD FloatToInt(One);
Command(FilterTexture,0,0,DoLoadShade,NoFeedback,Default) FloatToInt(One) Done;

In this case, the max technique is used for LOD calculation. The PlaneScale registers
scale the LOD calculation by the width or height of the texture.

Two stage perspective corrected & mipmapped 2D texture coordinate program
For using two texture stages, we just have to replicate the program, taking care of
accessing the right external interpolated sources for each stage (PStart, dPdx and
dPdy) and the right texture scale register (PlaneScale).

Program(TCU_PERSP_CORRECT_2D_MIPMAP_STAGES_01, 0x00)
 // First texture stage, note we access Q0,S0,T0
 W[Q] = MAdd(dPdx[Q0], X, dPdy[Q0], Y) SavedP;
 W[S] = MAdd(dPdx[S0], X, dPdy[S0], Y);
 W[T] = MAdd(dPdx[T0], X, dPdy[T0], Y);

 Q2 = W[Q] = MAdd(PStart[Q0], One, B[Q], One);
 W[S] = MAdd(PStart[S0], One, B[S], One);
 W[T] = MAdd(PStart[T0], One, B[T], One);

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-27

 // Begin to do the async division
 DivLP(One, B[Q]);

 // Calculate derivatives for LOD.
 LoadMax = MSub(dPdx[S0], A[Q0], dPdxSaved, B[S0], PlaneScale[S0]);
 MergeMax = MSub(dPdy[T0], A[Q0], dPdySaved, B[T0], PlaneScale[T0]);
 MergeMax = MSub(dPdx[S0], A[Q0], dPdxSaved, B[S0], PlaneScale[S0]);
 MergeMax = MSub(dPdy[T0], A[Q0], dPdySaved, B[T0], PlaneScale[T0]);

 // Perspective correct
 C[S] = Wrap(DivResult, B[S]);
 C[T] = Wrap(DivResult, B[T]);
 C[3] = LOD FloatToInt(One);
 // Send filtertexture command for texture id 0
 Command(FilterTexture,0,0,DoLoadShade,NoFeedback,Default) FloatToInt(One);

 // Second texture stage, note we access Q1,S1,T1
 W[Q] = MAdd(dPdx[Q1], X, dPdy[Q1], Y) SavedP;
 W[S] = MAdd(dPdx[S1], X, dPdy[S1], Y);
 W[T] = MAdd(dPdx[T1], X, dPdy[T1], Y);

 Q2 = W[Q] = MAdd(PStart[Q1], One, B[Q], One);
 W[S] = MAdd(PStart[S1], One, B[S], One);
 W[T] = MAdd(PStart[T1], One, B[T], One);

 // Begin to do the async division
 DivLP(One, B[Q]);

 // Calculate derivatives for LOD.
 LoadMax = MSub(dPdx[S1], A[Q], dPdxSaved, B[S], PlaneScale[S1]);
 MergeMax = MSub(dPdy[T0], A[Q], dPdySaved, B[T], PlaneScale[T1]);
 MergeMax = MSub(dPdx[S0], A[Q], dPdxSaved, B[S], PlaneScale[S1]);
 MergeMax = MSub(dPdy[T0], A[Q], dPdySaved, B[T], PlaneScale[T1]);

 // Perspective correct
 C[S] = Wrap(DivResult, B[S]);
 C[T] = Wrap(DivResult, B[T]);
 C[3] = LOD FloatToInt(One);
 // Send filtertexture command for texture id 1
Command(FilterTexture,1,1,DoLoadShade,NoFeedback,Default) FloatToInt(One) Done;

Note how the second Command instruction gets the texel data from the second texture and
targets it to the second Shading Unit register set.
With this code, Shading Unit registers T[0..3] (register set 0) will receive the RGBA values
of the lookup of texture with ID 0, while Shading Unit registers T[4..7] (register set 1) will
receive the RGBA values of the lookup of texture with ID 1.

Programming Overview Miranda P10 Programmers Guide

4-28 Proprietary and Confidential 3Dlabs

Perspective corrected & mipmapped 2D texture coordinate function
In the previous example, the program length grows lineally with each texture stage we
add. We can achieve the same result using functions and function calls:

Program(TCU_PERSP_CORRECT_2D_MIPMAP_FUNCTION, 0x00)
 W[Q] = MAdd(dPdx[@Q], X, dPdy[@Q], Y) SavedP;
 W[S] = MAdd(dPdx[@S], X, dPdy[@S], Y);
 W[T] = MAdd(dPdx[@T], X, dPdy[@T], Y);

 Q2 = W[Q] = MAdd(PStart[@Q], One, B[Q], One);
 W[S] = MAdd(PStart[@S], One, B[S], One);
 W[T] = MAdd(PStart[@T], One, B[T], One);

 // Begin to do the async division
 Div(One, B[Q]);

 // Calculate derivatives for LOD and store them in temporaries
 W[dsdx] = MSub(dPdx[@S], A[Q], dPdxSaved, B[S], PlaneScale[@S]);
 W[dtdx] = MSub(dPdx[@T], A[Q], dPdxSaved, B[T], PlaneScale[@T]);
 W[dsdy] = MSub(dPdy[@S], A[Q], dPdySaved, B[S], PlaneScale[@S]);
 W[dtdy] = MSub(dPdy[@T], A[Q], dPdySaved, B[T], PlaneScale[@T]);

 // Calculate the LOD approximation using the magnitude
 LoadMag = MAdd(A[dsdx], A[dsdx], B[dtdx], B[dtdx]);
 MergeMag = MAdd(A[dsdy], A[dsdy], B[dtdy], B[dtdy]);

 // Perspective correct
 C[S] = Wrap(DivResult, B[S]);
 C[T] = Wrap(DivResult, B[T]);
 // Write the level of detail value. FloatToInt(One) acts as a NOP
 C[3] = LOD FloatToInt(One) Return;

Because the function doesn’t know which interpolated parameters or texture scale register
needs to access, it uses those registers with relative addressing. At function call time, the
right base value will be stored in PlaneBase register.
The Command instruction will also have to be issued after calling the function.

The previous function is called for two texture stages with the following code:

Program(TCU_FUNCTION_CALL,0x00)

 // Setup plane base and call function for first stage
// "Min(A[0], B[0])" acts as a dummy (NOP)
// instruction that doesn't use SourceA bit field
 PlaneBase(0) Call(TCU_PERSP_CORRECT_2D_MIPMAP_FUNCTION) Min(A[0], B[0]);

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-29

 // Send FilterTexture command for first texture stage
 Command(FilterTexture,0,0,DoLoadShade,NoFeedback,Default) FloatToInt(One);

 // Setup plane base and call function for second stage
 PlaneBase(4) Call(TCU_PERSP_CORRECT_2D_MIPMAP_FUNCTION) Min(A[0], B[0]);
 // Send FilterTexture command for second texture stage
 Command(FilterTexture,1,1,DoLoadShade,NoFeedback,Default) FloatToInt(One) Done;

On each function call, we setup the PlaneBase register so the function accesses the
right set of registers for the given texture.

Note that because of the function call setup, this program is two execution cycles longer,
although much shorter in program space: only two more instructions are needed for each
extra texture stage.

The Command instruction could be moved inside the function if the global field version of
the instruction was used: You could preload the lower word of global registers 0 and 4
with values 0x0 and 0x9 respectively, and append the line.

Command(FilterTexture,Global0[@0],DoLoadShade,NoFeedback,Default) FloatToInt(One)

Return;

to the function (obviously removing the return sequencer from the former last line of the
function). The function call would be a simple

Program(TCU_FUNCTION_CALL,0x00)
 // Setup plane base and call function for first stage
// "Min(A[0], B[0])" acts as a dummy (NOP)
// instruction that doesn't use SourceA bit field
 PlaneBase(0) Call(TCU_PERSP_CORRECT_2D_MIPMAP_FUNCTION) Min(A[0],

B[0]);
 // Setup plane base and call function for second stage
 PlaneBase(4) Call(TCU_PERSP_CORRECT_2D_MIPMAP_FUNCTION) Min(A[0],

B[0]);

Using this approach, each new texture stage requires only one extra line.

Mipmap linear 3D textures
The texture fetch mechanism can filter up to 8 texels at the same time. This is normally
achieved using

• Trilinear filtering on 2D textures: using four texels from one mipmap level and four
texels from the next mipmap level.

• Trilinear filtering on 3D textures: using four texels from one 3D slice and four texels
from the next 3D slice. Note that in this case we don’t use the mipmap level for the

Programming Overview Miranda P10 Programmers Guide

4-30 Proprietary and Confidential 3Dlabs

third linear interpolation, but we interpolate between bilinear filters of adjacent depth
slices.

Due to this limitation, to do mipmap linear filtering on 3D textures it’s necessary to use a
special texture coordinate unit program that:

• Sets the fifo entries to the necessary S, T, R and LOD values.

• Fetches the texel through for the high level of detail 3D texture and receives it using
the feedback mechanism.

• Fetches the texel through feedback for the low level of detail 3D texture, using the .

• Calculates the interpolation between one and the other with regard to the computed
LOD value.

• Uses passthrough to send the interpolated RGBA values to the Shading Unit.

This is by far the most complicated program of this section and fully demonstrates the
flexibility of the Texture Coordinate Unit. Other advanced programs can be found in
chapter 10.

Program(TCU_PERSP_CORRECT_3D_MIPMAP_FUNCTION, 0x00)
 W[Q] = MAdd(dPdx[@Q], X, dPdy[@Q], Y) SavedP;
 W[S] = MAdd(dPdx[@S], X, dPdy[@S], Y);
 W[T] = MAdd(dPdx[@T], X, dPdy[@T], Y);
 W[R] = MAdd(dPdx[@R], X, dPdy[@R], Y);

 Q2 = W[Q] = MAdd(PStart[@Q], One, B[Q], One);
 W[S] = MAdd(PStart[@S], One, B[S], One);
 W[T] = MAdd(PStart[@T], One, B[T], One);
 W[R] = MAdd(PStart[@R], One, B[R], One);

 // Begin to do the async division
 Div(One, B[Q]);

 // Calculate derivatives for LOD
 W[dsdx] = MSub(dPdx[@S], A[Q], dPdxSaved, B[S], PlaneScale[@S]);
 W[dtdx] = MSub(dPdx[@T], A[Q], dPdxSaved, B[T], PlaneScale[@T]);
 W[drdx] = MSub(dPdx[@R], A[Q], dPdxSaved, B[R], PlaneScale[@R]);
 W[dsdy] = MSub(dPdy[@S], A[Q], dPdySaved, B[S], PlaneScale[@S]);
 W[dtdy] = MSub(dPdy[@T], A[Q], dPdySaved, B[T], PlaneScale[@T]);
 W[drdy] = MSub(dPdy[@R], A[Q], dPdySaved, B[R], PlaneScale[@R]);

 W[temp] = MAdd(A[dsdx], A[dsdx], B[dtdx], B[dtdx]);
 LoadMag = MAdd(A[temp],One, B[drdx], B[drdx]);
 W[temp] = MAdd(A[dsdy], A[dsdy], B[dtdy], B[dtdy]);
 MergeMag = MAdd(A[temp], One, B[drdy], B[drdy]);

 // Perspective correct
 C[S] = Wrap(DivResult, B[S]);

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-31

 C[T] = Wrap(DivResult, B[T]);
 C[R] = Wrap(DivResult, B[R]);
 C[Q] = LOD FloatToInt(One) Return;

Program(TCU_3D_MIPMAP_LINEAR_FUNCTION_CALL,0x00)
 // Call the function to setup the texture coordinates
 PlaneGlobalBase(0,0) Call(TCU_PERSP_CORRECT_3D_MIPMAP_FUNCTION)

Min(A[0], B[0]);

 // Get the texels from hi res texture
 Command(FilterTexture, 0, HiResTexture, NoLoadShade, DoFeedback, Default)

FloatToInt(One);

 // Store LOD in parallel with first feedback
 Flag = P W[Temp] = MAdd(Zero,Zero, One, LOD);
 W[NegativeLOD] = MSub(A[Temp],One, One, One);
 W[PositiveLOD] = MAdd(A[Temp],One,One,One);
 W[Temp] = Select(A[PositiveLOD],B[NegativeLOD],14);
 W[Temp] = Fract(A[Temp]) WaitForFeedbackData;

 W[HiRed] = IntToFloat(Feedback(8,0,Zero));
 W[HiGreen] = IntToFloat(Feedback(8,8,Zero));
 W[HiBlue] = IntToFloat(Feedback(8,16,Zero));
 W[HiAlpha] = IntToFloat(Feedback(8,24,Zero)) FinishedWithFeedbackData;

 // Get the texels from lo res texture, in parallel

 // with the previousCommand(FilterTexture, 0, LoResTexture,
 //NoLoadShade, DoFeedback, Default) FloatToInt(One);

 // Do the interpolation for Hi colors, and work back to back with second feedback
 W[HiRed] = MSub(A[HiRed], One, A[HiRed],B[Temp]);
 W[HiGreen] = MSub(A[HiGreen], One, A[HiGreen],B[Temp]);
 W[HiBlue] = MSub(A[HiBlue], One, A[HiBlue], B[Temp]);
 W[HiAlpha] = MSub(A[HiAlpha], One, A[HiAlpha], B[Temp])

WaitForFeedbackData;

 W[LoRed] = IntToFloat(Feedback(8,0,Zero));
 W[LoGreen] = IntToFloat(Feedback(8,8,Zero));
 W[LoBlue] = IntToFloat(Feedback(8,16,Zero));
 W[LoAlpha] = IntToFloat(Feedback(8,24,Zero)) FinishedWithFeedbackData;

 // Finish the interpolation
 W[LoRed] = MAdd(A[LoRed],B[Temp],Zero, Zero);
 W[LoGreen] = MAdd(A[LoGreen],B[Temp],Zero, Zero);
 W[LoBlue] = MAdd(A[LoBlue],B[Temp],Zero, Zero);
 W[LoAlpha] = MAdd(A[LoAlpha],B[Temp],Zero, Zero);

 W[HiRed] = MAdd(A[LoRed], One, B[HiRed], One);

Programming Overview Miranda P10 Programmers Guide

4-32 Proprietary and Confidential 3Dlabs

 W[HiGreen] = MAdd(A[LoGreen], One, B[HiGreen], One);
 W[HiBlue] = MAdd(A[LoBlue], One, B[HiBlue], One);
 W[HiAlpha] = MAdd(A[LoAlpha], One, B[HiAlpha], One);

 C[FifoRed] = FloatToInt(A[HiRed]);
 C[FifoGreen] = FloatToInt(A[HiGreen]);
 C[FifoBlue] = FloatToInt(A[HiBlue]);
 C[FifoAlpha] = FloatToInt(A[HiAlpha]);

 // Pass through to shading unit
 Command(PassThru4, 0,0, DoLoadShade, NoFeedback, Default) FloatToInt(One)

Done;

Note that this is not the only way of achieving mipmap linear 3D textures. You could:
• Send the hi level of detail and the low level of detail texel values to the Shading Unit

(either using multiple programs and the same texture register set or two texture
register sets).

• Send the interpolation value (LOD) to the Shading Unit using passthrough mode.
• Interpolate the texels in the Shading Unit.

Tricks of the trade
Programming the Texture Coordinate Unit is always a tradeoff between program space,
program execution cycle count and image quality.
Some tips worth taking into account when coding programs follow:
• Use DivLP (low precision divide) and LOD calculation approximations (magnitude

method) if you don’t require high texture quality. The effect of these approximations is
normally a too high frequency mipmap on very anisotropic primitives, or texture
swimming on high valued texture coordinates (textures with a high repeat factor).

• Pair instructions whenever possible by interleaving different coordinate/texture stage
calculations to avoid stalls.

• Don’t calculate the LOD value if not needed: some textures work just well without
using mipmaps (for example lightmaps) and when combining several texture stages,
not using mipmaps allows better pairing between the calculations from different
stages. Recall, though, that even if imipmaps are not used, LOD calculation is
necessary if the minification filter differs from the magnification filter.

• Sharing 1/Q value among texture stages, don’t perspective correct if not needed
(particles/billboards).

• Z-Buffer values are comparable although not compatible with texture coordinate
floating point numbers. This means that you can map the z-buffer

• Accessing LOD for bias.

4.4.4 Introduction to Shading
This section describes the basic operation of the Shading Unit, a programmable unit
designed for per-pixel shading calculations.
By shading we mean the calculation of a colour value for each pixel, or fragment, making
up a primitive. By per-pixel we mean those operations that are performed independently

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-33

for each pixel, as opposed to only once for, say, each vertex or primitive. The functions
performed by the Shading Unit are roughly those specified by the texture stage pipeline, in
OpenGL 1.2 and DirectX7, and the arithmetic instructions of a pixel shader program, in
DirectX8.
In addition, the Shading Unit is typically used to implement fog and alpha test.
Typically, some aspects of shading are performed independently for each pixel, while
other, more expensive, calculations are performed per-vertex or per-primitive and
approximated at the pixel level by means of linear interpolation. The per-vertex aspects of
shading calculations are performed by the Vertex Shading Unit (See Section 4.3.2) and
are not discussed here.
Although per-pixel shading is conceptually performed for each fragment independently,
the Shading Unit has sixteen fragment processors in a SIMD array and so processes
sixteen fragments in parallel. Due to its SIMD architecture, the same operations are
performed for every fragment.
Note: The values calculated typically differ from one fragment to the next. This requires some

degree of separation of the fragments, and resources in the Shading Unit can be usefully
characterised as being either shared globally or else replicated locally for each
fragment.

Although the Shading Unit is a multi-processor unit, it is sometimes useful to describe its
operation in terms of only a single fragment; for example we might say that there are
thirty-two local registers in the Shading Unit, when what we mean is that there are thirty-
two local registers for each fragment.

4.4.4.1 Input Data (plane equations, textures)

Input data to per-pixel shading operations consists of interpolated data arising from per-
vertex calculations, as well as sampled and filtered texture data arising from texture
lookups. In addition calculations may make use of per-primitive constants loaded directly
by the driver, which are described in Section 4.3.4.3.
The results of per-vertex shading calculations are linearly interpolated by means of plane
equation evaluators to produce interpolated values for each fragment. Specifically, the
Colour[A...H] outputs of the Vertex Shading Unit are interpolated and made available for
use in per-pixel shading calculations by means of the Shading Unit plane equation
registers.
There are thirty-two 8-bit plane equation registers per fragment. However they serve
functionally as eight four-component 32-bit registers, since they are loaded with the
interpolated four-component values derived from the eight Vertex Shading Unit Colour
outputs.
The interpolated values contained in the plane equation registers are typically thought of
as colours, but their use is arbitrary and dictated entirely by their function within the
supplied Shading Unit program. Other possible uses include interpolated per-pixel normals
and matrix coefficients for per-pixel lighting calculations.
As well as interpolated values arising from per-vertex calculations, per-pixel shading
calculations may make use of filtered texture data derived from per-fragment texture
lookups. The calculation of texture coordinates for texture lookups is performed by the
Texture Coordinate Unit (See Section 4.3.3), and is not described here. The filtered

Programming Overview Miranda P10 Programmers Guide

4-34 Proprietary and Confidential 3Dlabs

texture data arising from these lookups is made available for use in shading calculations
by means of the Shading Unit texture registers.
There are thirty-two 8-bit texture registers per fragment, but functionally they serve as
eight four-component 32-bit registers. In this view texture register n is loaded with the
filtered RGBA texture data for texture n.

4.4.4.2 Output Data (fragment colors)

Since the function of the Shading Unit is to perform per-pixel shading calculations, its
output is simply an RGBA colour value per-fragment that is forwarded for use as the
colour for that fragment. The RGBA output value consists of four 8-bit components.
The output colours are written (under program control) to the C FIFO, which forms the
interface to the next unit. Because the C FIFO is a queue rather than a register set, each
component of the output colour must be written to the C FIFO exactly once. However the
components may be written in any order.

4.4.4.3 Meory (instructions, global data, temporaries)

Storage for intermediate results is provided in the form of the Shading Unit local registers.
There are thirty-two local registers per fragment, and each local register is signed 12-bit
precision with a fixed-point s3.8 format. This gives the ability to represent signed values
within the range [-0x8.00, 0x7.FF] during program calculations.
Storage is also provided for thirty-two global registers, which are shared across all
fragments rather than being instantiated for each. Each global register is of 8-bit unsigned
precision. Global registers are loaded by the driver by means of the ShadeGlobal[8]
registers. The ShadeGlobal registers load the global registers in four-register-aligned
four-register groups, such that the global registers are notionally grouped into eight 32-bit
four-component registers, from the point of the view of the driver.
Finally, storage is provided for the Shading Unit program, which is the sequence of
Shading Unit instructions that the unit will execute. The single program buffer is shared by
all fragment processors, in keeping with the SIMD nature of the unit. This buffer provides
storage for 128 instructions. The driver loads the instructions of the program using the
ShadeProgramData command. The instructions are loaded at the current load address,
which is auto-incremented after each load. The ShadeProgramAddr command sets the
current load address.

4.4.4.4 Programs act as transfer functions (data types – bytes, multi-byte arithmetic)

The program executed by the Shading Unit computes a single output RGBA colour value
from a range of available inputs. The program alone defines the function that is computed.
The instruction opcodes that are provided are targetted at the following calculations.
• Combining colour values: addition, modulation, subtraction, etc.
• Interpolation between colours.
• Comparing values.
• Selecting between two computed values depending on comparison results.
• Performing multi-word arithmetic using carry.
Dot products between pairs of vectors may be computed by means of sequences of
multiplies and adds.

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-35

Internal results are stored in the local registers and hence are represented in s3.8 signed
fixed-point format. This permits signed calculations on quantities such as vectors.
In addition the program is able to set or clear fragment flags, marking fragments as valid
or invalid. This can be used to implement alpha test and texkill.

4.4.4.5 Argument Formats

Note that while the internal representation of the Shading Unit local registers is s3.8
signed fixed-point, the texture and plane equation registers are only 8-bit unsigned. This is
because the values stored in the latter register types are derived from sources such as
interpolated vertex data and textures, which have historically represented 8-bit colour
components.
For this reason some means is required of representing signed values with ranges other
than [0, 255] in the 8-bit registers, together with a means of ensuring that those values are
correctly interpreted on being read from such registers.
It is now common to represent signed floating point values in the unsigned 8-bit format by
means of scaling and biasing. For example values in the range [-1, 1] can be represented
as follows:
• Scale by 0.5 to produce [-0.5, 0.5] range.
• Bias by +0.5 to produce [0, 1] range.
• Scale by 255 to produce [0, 255] unsigned 8-bit range.
Signed values represented in this way may safely be interpolated and texture filtered.
Likewise it is common to represent numbers in the floating point range [0, 1] by scaling
them by 255 to produce the 8-bit unsigned range [0, 255].
The Shading Unit instruction format includes intrinsic argument formats intended for use
in interpreting scaled and biased values sourced from texture and plane equation
registers. These formats are mapping modes that dictate how unsigned 8-bit values
should be promoted to the internal s3.8 format. The following are the most useful
argument formats:

• ZeroExtend. In this format 8-bit unsigned values are simply zero-extended with a zero
(positive) sign bit and three zero integer bits, converting the unsigned 8-bit integer
range [0,255] to the fixed point range [0x0.00, 0x0.FF].

• MapToOne. This format is provided for mapping the unsigned 8-bit integer range
[0,255] to the fixed point range [0x0.00, 0x1.00], ensuring that values of 255 get
interpeted as 1.0.

• Bias2. This format deducts a bias of 0.5 and scales by two. The initial 8-bit value is
assumed to be a biased-and-scaled representation of a number in the range [-1, 1].

4.4.4.6 Multi-word Arithmetic

If the internal s3.8 numeric representation is not of sufficient range, it is possible to
perform multi-word arithmetic, at some considerable performance cost. Various constructs
are provided in the Shading Unit for this purpose:
• All addition and subtraction operations generate a carry.
• Versions of the addition and subtraction opcodes that take into account a previously

generated carry.
• Upper-word and lower-word versions of the multiplication opcode, for calculating the

upper and lower word of a multi-word multiplication product.

Programming Overview Miranda P10 Programmers Guide

4-36 Proprietary and Confidential 3Dlabs

• Subroutining with relative addressing, which may be useful for the coding of general-
purpose multi-word arithmetic routines.

4.4.4.7 Saturation

The Shading Unit comes equipped with versions of the arithmetic opcodes that saturate to
the internal range of [-0x8.00, 0x7.FF]. However it is commonly desirable to saturate the
results of internal computations to some range other than the internal range. For example
DirectX7 requires that the results of each texture stage should be clamped to [0, 1] range
between stages. Likewise DirectX8 requires that the results of pixel shader instructions
should be clamped to the numerical range exported by the hardware, which is typically [-1,
1]. Finally DirectX8 specifies a saturate instruction modifier which saturates the result of
an instruction to [0, 1].
The Shading Unit has a Saturate opcode which saturates its input to either [0, 1] or [-1,
1], depending on the value of the Div2 instruction field. Thus saturation can be performed
whenever required, at the cost of a single instruction. Ideally it is possible to track the
potential numerical range of results at program generation time (given the limited range of
the inputs and the potential range of earlier results) and so avoid generating explicit
saturation instructions except when absolutely necessary.
Saturation to other imaginable ranges is not immediately possible but could be
accomplished at some expense by scaling, saturating, and de-scaling.

4.4.4.8 Subroutines and Relative Addressing

The limited size of the program buffer is the greatest limitation on program usefulness. In
the worst case, Shading Unit programs generated naively from DX8 pixel shader
programs may be too long to fit in the available space. As a solution the Shading Unit
instruction format provides constructs for subroutining and two distinct methods of relative
addressing.
A useful technique is to define standard subroutines for the various operations defined by
the API and to call these for each set of operands as appropriate. Another is to call the
same program code for each component of a vector or colour in turn, possibly using a
second level of subroutines.
Subroutining requires generality of operands to be useful, and relative addressing is the
chief means of achieving this.
The Shading Unit has four addressing modes, which are the cartesian product of two
independent mechanisms:
• Absolute
• AbsoluteComponent
• ArgRelative
• ArgRelativeComponent
The first mechanism is component relative addressing, in which the least significant two
bits of the register address provided in the instruction field are replaced with a 2-bit
component offset explicitly set on the calling instruction (which implies it is only useful
within subroutines). The intended use of this mechanism is the implementation of
subroutines which operate on single colour or vector components and can be called for
each relevant component in turn.
The second mechanism is the more traditional arg relative addressing, in which the
address provided in the instruction field is treated as an offset to be added to one of four

Miranda P10 Programmers Guide Programming Overview

3Dlabs Proprietary and Confidential 4-37

possible base addresses. The four base addresses are labelled A, B, C and D, and any
one may be used orthogonally on any register reference. The A, B and C base address
registers are loaded automatically on any call instruction with the effective addresses of
the two source arguments and destination, respectively. The D base address register may
be loaded explicitly using an Arg opcode. The previous set of base addresses is pushed
onto an internal stack on a subroutine call, and popped off the stack on the return,
allowing nesting of subroutine calls with arg relative addressing.
The intended use of the second relative addressing mechanism is the implementation of a
library of subroutines that perform standard operations. The call instruction (which may be
the inlined first instruction of the routine) is responsible for loading the base address
registers with the addresses of the parameters to be read and written in the routine.

4.4.4.9 Opcodes

The following instruction opcodes are supported:

Opcode Description Notes
Add Q = A + B Basic add.
AddC Q = A + B + carry

Add with carry for multi-word arithmetic.

AddS Q = A + B
Q = min(Q, 0x7.ff)
Q = max(Q, -0x8.00)

Saturating add.

AddSC Q = A + B + carry
Q = min(Q, 0x7.ff)
Q = max(Q, -0x8.00)

Saturating add with carry.

Sub Q = A – B Basic subtract.
SubC Q = A – B – carry Subtract with carry for multi-word arithmetic.
SubS Q = A – B

Q = min(Q, 0x7.ff)
Q = max(Q, -0x8.00)

Saturating subtract.

SubSC Q = A – B – carry
Q = min(Q, 0x7.ff)
Q = max(Q, -0x8.00)

Saturating subtract with carry.

MultU Q = (a * b) >> 12 Upper word of multi-word multiply result.
MultL Q = (a * b) Lower word of multi-word multiply result.
MultS Q = (a * b) >> 12

Q = min(Q, 0x7.ff)
Q = max(Q, -0x8.00)

Modulate with saturation.

PassA Q = A
SelectA Q = flag ? A : B Conditional. No branches so evaluate both paths and select

the correct result.
SelectB Q = flag ? B : A Inverse conditional.
Saturate If (Div2)

Q = min(A, 0x0.00)
Q = max(Q, 0x1.00)
else
Q = min(A, -0x1.00)
Q = max(Q, 0x1.00)

Saturate to [0, 1] if Div2 field is set, otherwise to [-1, 1].

Programming Overview Miranda P10 Programmers Guide

4-38 Proprietary and Confidential 3Dlabs

Opcode Description Notes
Arg Nop Load base address D from the WEMode, FlagMode and Div2

fields. No result written.

Miranda P10 Programmers Guide Initialization

3Dlabs Proprietary and Confidential 5-1

5
5 Initialization

5.1 Memory Allocation (typical positions for LB, FB)
TBA

5.2 Page Tables
Page Table Initialization and management is described in detail in section 2.3.1, Address
Translation Initialization .

5.3 Context Record
TBA

5.4 Registers

5.5 Programs

5.5.1 Program Initialization
The P10 architecture contains five programmable units. These are the Pixel Address unit,
the Pixel unit, the Texture Coordinate unit, the Vertex Shader unit and the Pixel Shader
unit. Each of these units contains a program store that holds the instructions that can be
executed by the unit.
Programs can be an arbitrary number of instructions in length. The last instruction in each
program includes information that allows the unit to know when it has reached the end of
the program. This feature allows programs to be placed anywhere within the program
store and if necessary the programs can even wrap around the end. It is therefore only
necessary for the programmer to download the program into the program store, set the
program start address, and then run the program.
The program store can be considered simply as an array of instructions, as shown in
Figure 1. The address of the program is the location of the program within the program
store. Note that the size of the program store varies from unit to unit, for example the
program store within the pixel address unit can hold 32 instructions whereas the pixel
shader unit holds 128 instructions.

Initialization Miranda P10 Programmers Guide

5-2 Proprietary and Confidential 3Dlabs

Figure 1. An example program store containing three pixel address unit programs.

5.5.2 Specifying program start addresses
The P10 program assembler translates each program into an array of 32 bit instruction
data. The assembler also allows the programmer to specify the address of the program
but this is only necessary if the program includes absolute jump instructions. In all other
cases it makes more sense to set the program address to zero and use relative jumps
because this allows the program to be placed anywhere within the program store of the
unit.

5.5.3 Downloading programs
The mechanism for downloading programs is similar for each unit with the one exception
of the pixel address unit. The pixel address unit uses a slightly different approach because
the program store is quite small, only 32 instructions, and the pixel address unit
instructions are only 16 bits in size.

Miranda P10 Programmers Guide Initialization

3Dlabs Proprietary and Confidential 5-3

5.5.4 Downloading pixel address unit programs
Pixel address unit instructions are 16 bits in size. Consequently pairs of instructions are
mapped into the program store as 32 bit registers within the unit. The registers map to
even addresses in the program store so FBProg0 holds instructions 0 and 1, FBProg1
holds instructions 2 and 3, and so on.
Pseudo code for downloading the pixel address unit programs from Figure 1:
 extern ULONG pixelAddressProg1[4];
 extern ULONG pixelAddressProg2[1];
 extern ULONG pixelAddressProg3[1];

 FBProg0= pixelAddressProg1[0];
 FBProg1= pixelAddressProg1[1];
 FBProg2= pixelAddressProg1[2];
 FBProg3= pixelAddressProg1[3];
 FBProg4= pixelAddressProg2[0] | (pixelAddressProg3[0] << 16);

Note: The pixel address unit only supports absolute jump instructions. If you use

jumps within a pixel address unit program then you must download the
program to the same address that you specified within the source code.

5.5.5 Downloading other unit programs
The other programmable units require that you set a program address register and then
download the program. The following example is for the pixel unit but the procedure for
the other units is exactly the same.
Pseudo code for downloading two pixel unit programs:
 extern ULONG pixelProg1[8];
 extern ULONG pixelProg2[4];

 PixelProgramAddr= 0;
 PixelProgramData= pixelProg1;

 PixelProgramAddr= 4;
 PixelProgramData= pixelProg2;

Note that the PixelProgramData register should be written to using a PixelProgramData
hold tag that indicates the number of instructions that are to be downloaded. The 32bit
pixel program data then follows.

5.5.6 Setting program start addresses for tile programs
Each programmable unit has a mode register that contains the start address of the
program to run when a tile register is received. Some units can run different programs
depending on the program id within the tile.

Initialization Miranda P10 Programmers Guide

5-4 Proprietary and Confidential 3Dlabs

Pseudo code for setting the first, middle, and last program addresses in the pixel shader
unit for programs at address 0, 5 and 15:
 ShaderMode= TileEnable | TileAddrFirst(0) | TileAddrMiddle(5) | TileAddrLast(15);
Once the program, or programs, have been downloaded and the start addresses have
been set it is then only necessary to perform the drawing operation which will generate the
tile commands that will cause the program to run.

5.5.7 Running programs
Sometimes it is necessary to run programs manually. One example of this is to allow the
context unit to restore the values of local registers after a context switch. To do this
download a program that initialises local registers and run it by writing to the RunProgram
register in the unit. After a context switch the program will automatically be re-run, thereby
restoring the state of the local registers.

5.6 Video Output
This section describes how to program the Video Unit to a given video mode. P10
supports analog and digital output. It has two DACs, enabling it to drive two monitors
independently. The Video Unit’s registers are duplicated to permit dual head
configurations. The primary head’s registers are at hex offset 2000 from the base address
of the control region; the secondary head’s registers are at hex offset 8000. The
remainder of this section concentrates on programming the Video Unit to drive a single
monitor. Section 5.6.3 describes the differences between single and dual head
configurations.
Most of the Video Unit’s registers are indexed. To access the registers in this mode, set
VideoIndexControl.AutoIncrement to 1, then write the register’s index to the
VideoIndexLow and VideoIndexHigh registers. The indexed register can then be read /
written via the VideoIndexData register. By setting VideoIndexControl.AutoIncrement to
1, each read/write increments the register index, allowing consecutive bytes to be
accessed in turn.
The indexed registers of the Video Unit can also be accessed directly by forming an
address from the base address of the control region plus the offset of the Video Unit
registers plus the index of the register. The P10 decodes the byte-enables for read / write
accesses, enabling the programmer to access 8, 16, or 32 bits at a time.
When writing to an indexed register, it is possible to OR/AND the contents with the value
written. To OR the value with a register, add hex 400 to its index. To AND the value with a
register, add hex 800 to its index.

5.6.1 Programming the Video Mode, RAMDAC and LUTs
Programming the video mode can be broken down into the following steps:
- disabling the current video mode;
- initializing the video channels;
- initializing the LUT(s);
- programming the video timing registers; and
- enabling the new mode.

Miranda P10 Programmers Guide Initialization

3Dlabs Proprietary and Confidential 5-5

5.6.1.1 Disabling the current video mode.

Video output is disabled by setting VideoTiming.TimingEnable to 0. If the VGA is running,
it must be disabled by setting VGAControlReg.EnableVGADisplay to 0, to allow video
output to be driven by the Video Unit.

5.6.1.2 Initializing the video channels.

The Video Unit output is composed from four layered channels, from the lowest layer
upwards, these are: Underlay, Main, Overlay and Cursor. Each channel is independent of
every other. At initialization time only the Main channel is likely to be enabled. To initialize
the Main channel:
- set VideoMainAddress to the offset of the screen memory, from the start of the

framebuffer;
- set VideoMainXStart & VideoMainXEnd to the width (in pixels) of the desired video

mode; similarly, set VideoMainYStart & VideoMainYEnd to the desired height;
- set VideoMainStride to the byte stride between consecutive scanlines required for

the desired video mode. The stride is independent of the screen dimensions to
enable scanlines to be aligned optimally;

- set VideoMainFormat to the pixel format required for the mode;
- ensure VideoMainPan is set to 0;
- ensure that color keying and logic ops are disabled in VideoMainKeyTest and

VideoMainKeyOp;
- ensure that VideoBufferControl.Main is set to 0 (Single Buffer);
- set VideoTiming.MainEnable to 1. The main channel won’t actually be enabled until

VideoTiming.TimingEnable is set to 1.
Finally, set VideoUpdate.MainReg to 1 to inform the Video Unit that the Main channel’s
registers have been updated.

5.6.1.3 Initializing the LUT(s).

There are two LUTs. In 8bpp color index modes, the most common configuration will be to
load the palette into LUT0 and the Gamma Correction table into LUT1. For RGB modes,
LUT0 will not generally be used (though see the register definition for alternative uses for
LUT0). LUT data is accessed via the VideoPaletteWriteAddress and VideoPaletteData
registers. Both LUTs are accessed using the same registers, the appropriate LUT is
selected by setting VideoControl1.AccessLUT to either 0 (LUT0) or 1 (LUT1).
To load the color index palette, set VideoLUT0’s Mode to 1 (ColorIndex), it’s MainEnable
to 1 and Width to the width of each color component. Next, load the palette data into the
LUT. Six and eight bit color component’s are written as one byte per R, G, B component;
these are scaled up to ten bit values by P10, if VideoControl1.ExtendLUT is set to 1. Ten
bit component’s are written as two bytes each, only the bottom ten bits are significant. Set
VideoPixelMask to 0xff (this is only applicable to LUT0) to indicate that the index to the
palette isn’t masked (assuming that all 256 entries of the LUT have been programmed).
To load the Gamma Correction table, repeat the process described above, this time for
LUT1 (VideoLUT1.Mode should be set to 0).

Initialization Miranda P10 Programmers Guide

5-6 Proprietary and Confidential 3Dlabs

5.6.1.4 Programming the Video Timing Registers.

This part of the initialization comprises three steps: setting-up the dot clock, setting-up the
video timing counters and setting-up other DAC control registers.
The dot clock ticks once for each pixel read by the DAC. Before it can be re-programmed
it must be stopped by setting DClk0Control.State to 0 (DriveLow). A PLL must be chosen
for the clock source. Any PLL can be chosen to drive the clock, but this example uses
PLL1:
1. Set PLL1Control.Enable to 0 (Disable).
2. Next, calculate the values of the PLL Prescale, FeedbackScale and PostScale

variables required to generate a PLL output at the desired dot clock frequency, write
these to PLL1PreScale, PLL1FeedbackScale and PLL1PostScale.

3. Set PLL1Control.Enable to 1 (Enable) and PLL1Control.Ref to 0 (Internal). The PLL
internal reference clock runs at 14.3182MHz.

4. Wait for PLL1 to lock to the desired frequency by waiting for PLL1Control.Lock to go
to 1.

5. Finally, it is safe to enable the DClk by setting DClk0Control.Src to 4 (PLL1) and
DClk0Control.State to 2 (Run).

.
Now set-up the video timing counters. The horizontal (pixel) counters are:
VideoHSyncStart, VideoHSyncEnd, VideoHBlankEnd and VideoHTotal. The vertical
(scanline) counters are: VideoVSyncStart, VideoVSync, VideoVBlankEnd and
VideoVTotal. These values are derived from the VESA timings.
Other DAC control registers required for setting-up the video timing include:
- VideoDACControl, normally only the Pedestal bit will be set to 1;
- VideoDACSyncControl, normally, only HSyncCtl & VSyncCtl need to be set to the

correct polarity of the sync signals.

5.6.1.5 Enabling the New Video Mode

To enable the new mode, set VideoTiming.TimingEnable to 1.

5.6.2 Using Video Scaling
Video scaling is not normally required when programming the video, however, some low
resolutions may require scaling if their X and / or Y dimensions are too small to be
supported well (or at all) by the monitor.
The simplest solution is to double the horizontal and / or vertical mode timing counters, in
turn requiring the dot clock to be doubled or quadrupled. If the horizontal timings have
doubled, set VideoScale.HScale to 8 in order to output the same pixel twice. This means
that, although the output resolution is twice what it should be, it still looks correct to the
viewer. To enable horizontal scaling, VideoControl0.PixelScale must also be set 1.
Similarly, if the vertical timings have doubled, set VideoScale.Vscale to 8 in order to
output the same line twice. To enable vertical scaling, VideoControl0.LineScale must
also be set to 1.

Miranda P10 Programmers Guide Initialization

3Dlabs Proprietary and Confidential 5-7

Video scaling can also be used to enable support for additional modes for digital monitors
that don’t provide native scaling.

5.6.3 Dual Head Video Output
Configuring the second head is almost identical to the procedure for configuring the first,
described in 5.6.1, this section outlines the major differences.
Note: The second head has it’s own set of Video Unit registers beginning at hex

offset 8000 from the start of the control region.

5.6.3.1 Disabling the current video mode

The second head doesn’t drive the VGA so it is not necessary to program the
VGAControlReg register.

5.6.3.2 Initializing the video channels.

The second head shares the framebuffer with the primary head, which means that the
main channel’s VideoMainAddress must point to a different region of the framebuffer.
The second head is independent of the primary and does not need to be programmed to
the same mode.

5.6.3.3 Initializing the LUT(s).

This step is identical for both heads.

5.6.3.4 Programming the Video Timing Registers.

This part of the initialization comprises three steps:
• setting-up the dot clock
• setting-up the video timing counters
• setting-up other DAC control registers.
Setting-up the dot clock for the secondary head differs from the primary because the clock
and PLL control registers are shared by both heads. Therefore the second head must use
DClk1 and PLL0 (PLL1 is used by the primary head in 5.6.1, we can assume that PLL2
and PLL3 are being used to drive MClk and KClk).
DClk1Control will be set-up identically to DClk0Control, except for the Src field, will must
be set to 3 (PLL0). PLL0 is a little different from the other PLLs as it has four sets of
registers. PLL0Select determines which set of registers are used. Sets A and B are
reserved for the VGA, leaving C and D available. Apart from selecting the register set for
PLL0 and programming that set’s PLL registers, setting-up PLL0 is otherwise identical to
setting up PLL1.

5.6.3.5 Genlocking

When configuring dual head output, the best visual quality is achieved by Genlocking the
heads so that they remain in sync. This is especially important when adding support for
stereo glasses. Genlocking is available for heads that share the same vertical refresh
rate, but works better when they also share the same horizontal refresh rate (which will be
true if both heads have the same resolution). To configure genlocking, each head’s
VideoGenlock register needs setting-up. The following fields of the register are common
to both heads:

Initialization Miranda P10 Programmers Guide

5-8 Proprietary and Confidential 3Dlabs

- Mode. Set to 2 (Internal), because both heads are on the same P10;
- LockStereo. Set to 1 if the heads are configured for stereo output; and
- VOnly. Set to 1 if the heads have different resolutions.
In addition, the Head field must be set to the index of the other head, i.e.
VideoGenLock[0].Head = 1 and VideoGenLock[1].Head = 0.
On some boards, it might not be possible to exactly match the refresh rates on both
heads, typically due to board layout issues. It is possible to correct any small
descrepencies using the genlock specific video timing counters: VideoGenlockH and
VideoGenlockV. These are also defined per head.
Note: P10 does not support Sync on Green.

5.6.4 Digital Video Output
Section 5.6.1 described how to program the video mode for an analog monitor. To enable
digital video output, only the DAC control registers need be programmed differently.
In VideoDPSyncControl (the digital port version of VideoDACSyncControl), the
VSyncCtl & HSyncCtl fields should be set to the correct polarity of the sync signals. If
analog video output is not required, it can be disabled by setting VSyncOverride and
HSyncOverride in VideoDACSyncControl to 2 (ForceLow) to force the analog monitor
into DPMS ‘off’ mode.
In VideoDPMode, set Mode to enable output from the digital port. Normally, this will be
set to 1 (SinglePixel), but for very high resolution modes outside the frequency range of
the PLLs, Mode can be set to 2 (DoublePixel), allowing the dot clock to run at half the
frequency otherwise required. The StrobeDelay and StrobeInvert fields are specific to
the board design and are not dealt with here.

5.6.4.1 The Digital Port.

The VideoDigitalPortControl register must also be set-up to enable digital output. This
register controls the behavior of the digital port and its set-up is dependent on the design
of the board. The digital port has two input pipes (In0 and In1) which aren’t discussed here
as they are only important when interleaving the output of two P10 chips. The digital port
also has two output pipes (Out0 and Out1). In addition, the output from the two DACs are
inputs to the digital port.
On boards with two digital outputs DAC0’s RGB data is routed to Out0 and DAC1’s RGB
data is routed to Out1. For boards that have only a single digital output, DAC1 and Out1
are not used. The DAC inputs to the digital port and the output pipes are all 24 bits wide.
Internally, the digital port has two 12 bit channels which can be configured as one 24 bit
channel when only one digital output is in use. The table on the next page illustrates the
possible configurations of the digital port and their effect on the VideoDigitalPortControl
register.

Miranda P10 Programmers Guide Initialization

3Dlabs Proprietary and Confidential 5-9

Configuration* Out0 Out1 VideoDigital
PortControl

(A) Single head board,
or dual head board
when only the primary
head is enabled

Channel0 and
Channel1 co-operate
to pass through DAC0
RGB data

Unused Mode = 3 (Out0)

(B) Dual head board
when only the
secondary head is
enabled

Unused Channel0 and
Channel1 co-operate
to pass through DAC1
RGB data

Mode = 5 (Out1)

(C) Dual head board,
where each head is
independent

Channel0 passes
through DAC0 RGB
data at double data
rate (to maintain 24 bit
output)

Channel1 passes
through DAC1 RGB
data at double data
rate (to maintain 24 bit
output)

Mode = 1 (Shared)

DoubleEdge=1 (On)

(D) Dual head board,
where the secondary
head is a clone of the
primary

Channel0 passes
through DAC0 RGB
data at double data
rate (to maintain 24 bit
output)

Channel0 passes
through DAC0 RGB
data at double data
rate (to maintain 24 bit
output)

Mode = 6 (DualOut0)

DoubleEdge = 1 (On)

(E) Dual head board,
where the primary head
is a clone of the
secondary

Channel1 passes
through DAC1 RGB
data at double data
rate (to maintain 24 bit
output)

Channel1 passes
through DAC1 RGB
data at double data
rate (to maintain 24 bit
output)

Mode = 7 (DualOut1)

DoubleEdge = 1 (On)

* Configuration is specified only in terms of the digital port. For instance if the primary head is analog and
the secondary head is digital, configuration (B) is applicable.

Miranda P10 Programmers Guide Synchronization

3Dlabs Proprietary and Confidential 6-1

6
6 Synchronization

6.1 Synchronization with Core and with VTG

6.1.1 Synchronizing Video Channel Updates with Video Output
The VideoUpdate register synchronizes each video channel’s registers with video output.
The VideoUpdate register has two flags for each channel, e.g. for the Main channel:-

6.1.2 VideoUpdate.MainBuffer
Set after updating the channel’s base address registers: VideoMainAddress and
VideoMainStereoAddress.

6.1.3 VideoUpdate.MainReg
Set after updating the other channel-specific registers: VideoMainPan, VideoMainStride,
VideoMainFormat, VideoMainXStart, VideoMainYStart, VideoMainXEnd, VideoMainYEnd,
VideoMainKeyTest, VideoMainKeyOp, VideoMainKeyRGBA and VideoMainBlend.

After writing the update flags, the VideoUpdate register can be read back to determine
when the registers have been updated. The VideoBufferControl determines when a
channel’s registers are updated. If the channel is in single buffer mode, the updates are
applied immediately, otherwise (double or triple buffered mode) the updates are applied
during frame blank.
Synchronizing Video Channels Updates Between Channels
The VideoLock registers can be used to ensure synchronization between channels. Two
independent locks can be configured per head using VideoLock0 and VideoLock1. A
Lock ensures that video updates to a locked channel are only latched when updates are
available to the other channels specified in the Lock register. This could be used, for
example, to ensure that buffer updates to the Main and Overlay channels are applied
during the same frame blank.

6.1.4 Synchronizing the Core with Video Output
The SyncToVTG command is used to stall the core units until a VTG sync point is
reached. The sync point is specified in the VideoGPEvent register and can be set to
occur when any of the video channel’s is updated. Generally, the SyncToVTG command
will be sent when the programmer needs to stall the command stream until the next frame
blank.

Synchronization Miranda P10 Programmers Guide

6-2 Proprietary and Confidential 3Dlabs

6.2 Invalidating Caches
The CacheControl command provides the following bit field controls:
• bit 0 = Flush LB Cache
• bit 1 = Invalidate LB Cache
• bit 2 = Flush Pixel Cache
• bit 3 = Invalidate Pixel Cache
• bit 4 = Invalidate Texture Primary Cache
• bit 5 = Invalidate Texture Secondary Cache

6.2.1 Texture Cache Control
When simply binding to a new texture (i.e. updating the TextureBaseAddress register
state) a CacheControl command that only invalidates the Texture Primary Cache is
sufficient.
If the data for a currently bound texture is being modified, for example by a texture
download operation, or a partial sub-texture update, or an update to the texture border
colour state, then both the primary and the secondary texture cache need to be
invalidated.
An optimised method for invalidating only a part of the texture secondary cache is
available and useful when only a small amount of the current texture data has been
altered. The InvalidateSecondaryTextureCache command is sent with the start address
of the data to be invalidated. The address is a byte address but the bottom 2 bits are
ignored. The address will be incremented by 4 to get to the next tile to invalidate. The
InvalidateSecondaryCacheCount command is then sent with a count of the number of
texture cache entries to invalidate (in units of 32bit groups).

6.2.2 Pixel and Local Buffer Cache Control
One example of a situation where it can be necessary to flush and invalidate the pixel
and/or local buffer cache is when the host uses the bypass mechanism to update local
memory directly rather than via the normal command stream.
Another example is an implementation of a depth buffer clear by temporarily setting one of
the FBBuffer registers to operate on a local buffer region rather than its normal pixel
buffer region. In this case the safest option is to flush and invalidate the pixel and local
buffer caches before and after implementation of the clear operation.

6.3 Interrupts

6.3.1 Interrupts & Synchronization
6.3.1.1 CommandIDApi Interrupts

CommandIDApi commands can be used to determine how much of a DMA buffer the
graphics chip has read in. When the graphics chip encounters a CommandIDApi
command it takes the software-definable 30-bit CommandID field and stores it in the

Miranda P10 Programmers Guide Synchronization

3Dlabs Proprietary and Confidential 6-3

CommandIDUsr register for the current context, it will additionally generate an interrupt if
the Intr bit is set.
CommandIDApi with interrupts is very useful because it can be ‘sprinkled’ throughout the
command stream. When a DMA buffer is full the software can go to sleep and wait for an
interrupt to occur rather than poll the CBufWrPtrUsr to check for free space. Polling is
generally inefficient on CPU resources and the reading of the CBufWrPtrUsr register
causes AGP bus traffic, which is also inefficient.

6.3.1.2 Example code for a rendering routine

…
if (My DMA buffer is almost full)
{
 // Send a CommandID, enable interrupt, then go to sleep
MyCommandIDAPI.CommandID = 0x10; // Set up commandID
MyCommandIDAPI.Intr = 1; // Generate an interrupt
AddCommandToDMABuffer(CommandIDAPITag, MyCommandIDAPI);
SleepUntilEvent (MyCommandIDEvent); // Wait for interrupt
 // It’s now safe to start adding more things to the DMA buffer
}
…

Ensure that there is enough room at the end of the DMA buffer for a command ID tag/data
pair and never sprinkle one in the middle of a large operation such as a download, as
these operation need to be atomic.

6.3.1.3 Example code for an interrupt routine:

…

if (UserRegs.CommIntrMask & MY_CONTEXT_BIT) //Handle MY interrupt

{
 Assert (UserRegs.CommandID[MY_CONTEXT] == 0x10, “Bad CommandID”);
 UserRegs.CommIntrMask = MY_CONTEXT; // Clear interrupt
WakeupEvent (MyCommandIDEvent);
 }
…
Note: Ensure that Command interrupts are enabled in the Interrupts register.

6.3.1.4 Sync Interrupts

Sometimes, rather than know how far through a DMA buffer a graphics chip has read it is
important to know, additionally, whether the graphics chip has actually processed (i.e.
rendered) the commands in the DMA buffer. This is what Sync commands are for, like
CommandIDApi commands they also have a 30-bit software-definable SyncID field and
an Intr bit.
Additionally, Sync commands also have a flush bit which, when enabled, causes the
command to stall the pipeline until all pending AGP writes have been flushed across the
bus.

Synchronization Miranda P10 Programmers Guide

6-4 Proprietary and Confidential 3Dlabs

Once again it is possible to determine whether a DMA buffer has been processed by
inserting a Sync command and then polling the SyncIDUsr until the value of the SyncID
changes, however, as with CommandIDApi it’s much more efficient and system-friendly
for the software to set the Intr bit and go to sleep until woken by an interrupt.

Note: The Sync commands inserts a bubble in the command stream because it
travels all the way through the graphics chip’s pipeline to the rasterizer and
back out again. This is expensive in performance terms so it is preferable to
use CommandIDApi wherever possible.

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-1

7
7 Image Download (How to, Setup)

7.1 Pixel Data
The PixelData tag is used to supply up to 32 bits of data for every pixel processed during
the operation of a DrawRectangle2D command, and is most frequently of use in
downloading image data from host memory into the framebuffer.
PixelData tags are 32 bits wide and can either contain unpacked data for a single pixel in
each tag, or packed data of 4-, 8-, 16-, 24- or 32-bits per pixel. The Rasteriser Unit
unpacks data from a series of tags and forwards it to the Pixel Unit where it is accessed
by the relevant fragment processor.
Whenever pixel data is provided to the rasteriser in this way, it is accepted in scanline
order (each scanline with increasing X), meaning that the tiled nature of the P10 is
transparent to the host.
Image downloads (native or translating) performed this way use the following main units:
 Rasteriser
 Pixel Address Unit
 Pixel Unit
Additionally, image downloads requiring a palettised translation can be achieved using
either the texture pipe or the GPIO subsystem:
 Texture Coordinate Unit
 Texture Address Unit
 Texture Index Unit
 Shading Unit
Or:
 Vertex Index Unit
 Vertex Data Unit

7.1.1 Native download setup
For native downloads, only the Pixel Address Unit and Pixel Unit require programs to be
loaded. The Pixel Address Unit program simply needs to send the destination address for
the buffer being used:

 Program(pixelAddressDownloadProg, 0)
 SendDestAddrAndTile(buf0, puReg0, Only);

Image Download Miranda P10 Programmers Guide

7-2 Proprietary and Confidential 3Dlabs

The Pixel Unit program should read the pixel data from the per-fragment data and output it
to the framebuffer:
 Program(pixelDownload24bppNative, 0)
 E = Fragment[0] C[0] = PassA(E);
 E = Fragment[1] C[1] = PassA(E);
 E = Fragment[2] C[2] = PassA(E) Done;

This program could also be used to perform raster operartions combining the downloaded
data with the destination and/or a solid colour (loaded into the global registers) or brush
pattern (pre-loaded into the local registers). For example:
 Program(pixelDownload24bppNativeXor, 0)
 E = Fragment[0] C[0] = Xor(P[0], E);
 E = Fragment[1] C[1] = Xor(P[1], E);
 E = Fragment[2] C[2] = Xor(P[2], E) Done;

After loading the programs and setting the PixelMode and FBMode tags appropriately,
the following tags need to be sent to complete the setup:

Tag Requirements
FBBufferN Set Width, PixelBytePitch, PixelSize, SubFieldStartByte & SubFieldStartCount as

appropriate for source. Set ReadEnable bit if the Pixel Unit program reads
the destination buffer (or specify with FBBufferReadEnables tag).

FBBaseAddrN Set to buffer base address.
FBBufferEnables Enable buffer N only.

Additionally, the RasterMode tag should be sent. The important fields to specify which
determine how the PixelData tags will be interpreted are:

Field Requirements
ByteSwap Set according to host memory layout:

0=ABCD (no swap), 1=BADC, 2=CDAB, 3=DCBA .
Mirror Set to enable mirroring of bits in the download data (bit 0 will be swapped

with bit 31, bit 1 with bit 30 etc).
PixelSize Specify size of packed download data (use 32bits if unpacked):

0=4 bits, 1=8 bits, 2=16 bits, 3=24 bits, 4=32 bits.
Invert Set to enable inversion of each bit in the downloaded data.
NibbleSwap Set if downloading 4-bit packed data to swap the order of nibbles within

each byte.

7.1.2 Native download operation
The download is performed by rasterising a 2D rectangle of the required dimensions in the
destination buffer, followed by sufficient PixelData tags to provide image download data
for each pixel in the rectangle.

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-3

The origin of the rectangle is specified using the RectanglePosition tag, which has the
following fields:

Field Requirements
X 2’s complement x-coordinate (14 bits)
Y 2’s complement y-coordinate (14 bits)

The rectangle is then defined with the DrawRectangle2D tag:

Field Requirements
Width Width of rectangle (0…8191)
Height Height of rectangle (0…8191)
Operation Set to 1 (SyncOnHostData). This infers the IncreasingX and IncreasingY fields.
PixelsPerScanline Set to 1 (process 8 pixels per scanline per tile).
PackedBitMask Set to 0.

Following the definition of the rectangle, the image data is sent as a series of PixelData
tags. Each scanline should be sent in turn with sufficient data to cover the entire scanline
(if this is not the case, the Rasteriser will stall indefinitely waiting for the remainder). When
sending packed image data, note that the Rasteriser will discard any remainder at the end
of each scanline, so each new scanline should start with a new PixelData tag.
To minimise the volume of data sent from the host, it is recommended that the number of
PixelData tags required for a scanline is calculated, and a hold tag sent followed by the
raw data for the entire scanline.

7.1.3 Translating downloads
For colour translations which do not use a palette, the only alteration to the method
already outlined is to the Pixel Unit program, which can be modified to carry out the
translation on the image data before outputting to the framebuffer.
An example program, to translate 24bpp image data to a 15bpp (555) framebuffer is
shown below:
 Define (scr_0, 0)
 Define (scr_1, 1)
 Define (scr_2, 2)
 Define (scr_3, 3)
 Define (img_0, 4)
 Define (img_1, 5)
 Define (img_2, 6)

 Program(pixelDownloadTrans24bppto15bpp, 0x00)
 E = Fragment[0] W[img_0] = PassA(E); // W[img_0]=BBBBBBBB
 E = Fragment[1] W[img_1] = PassA(E); // W[img_1]=GGGGGGGG
 E = Fragment[2] W[img_2] = PassA(E); // W[img_2]=RRRRRRRR
 E = 0x20 W[scr_0] = MultU(A[img_0], E); // W[scr_0]=000BBBBB
 E = 0x04 W[scr_1] = MultL(A[img_1], E); // W[scr_1]=gggggg00

Image Download Miranda P10 Programmers Guide

7-4 Proprietary and Confidential 3Dlabs

 E = 0xE0 W[scr_1] = And(A[scr_1], E); // W[scr_1]=ggg00000
 E = 0x04 W[scr_2] = MultU(A[img_1], E); // W[scr_2]=000000GG
 E = 0xF8 W[scr_3] = And(A[img_2], E); // W[scr_3]=RRRRR000
 E = 0x80 W[scr_3] = MultU(A[scr_3], E); // W[scr_3]=0RRRRR00
 C[0] = Or(A[scr_0], B[scr_1]); // gggBBBBB
 C[1] = Or(A[scr_2], B[scr_3]) Done; // 0RRRRRGG

7.1.4 Palettised translating downloads
The Pixel Unit does not have suitable instructions or data storage to perform palettised
downloads, so another mechanism must be employed. There are two basic methods, one
using the texture pipe and the other using the GPIO subsystem.
The method chosen depends on several factors. The advantages of the texture pipe
method include:

 Ease of implementation
 Speed of host operation
 Low host resource usage
 Unrestricted palette size

The main disadvantage of this method is the speed of P10 operation; the texture
subsystem splits each tile into four sub-tiles for processing, and hence only 4 pixels can
be processed at a time, rather than 8 as with the GPIO method.

7.1.4.1 Texture pipe method

The basic premise of this method is to first download a look-up table (LUT) to an area of
offscreen memory (using the standard native download method) and then map this to a
texture. Image download data is then used as an index into the texture map, with the
result passed to the Pixel Unit for combination with the framebuffer in the usual way.
The LUT can be downloaded to a 1D or 2D texture map as desired. The following
discussion uses a 1D map for simplicity.
After downloading the LUT to a suitable area of offscreen memory (using the standard
native download method described previously), a WaitForCompletion tag should be sent
with data value 0, to ensure the LUT is fully downloaded prior to being accessed by the
texture subsystem. Setup for the translation is then as follows.
The Texture Coordinate Program takes the downloaded image data, uses this as an index
into the texture and initiates the Shading Unit program. This example is suitable for 8-bit
or 4-bit palette indices, depending on the value loaded into Global0[0]:
 Define (PaletteTex, N) // using texture N
 Define (ShadeLoad, 1)
 Define (NoFeedback, 0)

 Program(TC_PaletteLookup8bppSource, 0)
 W[0] = IntToFloat(Feedback(8, 0, Zero)); // W[0]=downloaded data
 C[0] = Wrap(A[0], Global0[0]); // Global0[0]=1/256 or 1/16
 Command(FilterTexture, PaletteTex, 0, ShadeLoad, NoFeedback, Default)
 Fract(One) Done;

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-5

The Shading Unit program just passes the texture value onto the Pixel Unit:
 Program(SU_PaletteLookup24bppDest, 0)
 C[0] = PassA(T[0]_Z);
 C[1] = PassA(T[1]_Z);
 C[2] = PassA(T[2]_Z) Done;

The Pixel Address Unit program again simply needs to send the destination address for
the buffer being used:
 Program(pixelAddressDownloadProg, 0)
 SendDestAddrAndTile(buf0, puReg0, Only);

The Pixel Unit program should read the pixel data from the shading data (rather than the
per-fragment data as previously) and output it to the framebuffer:
 Program(pixelDownload24bppPalette, 0)
 C[0] = PassB(F[0]);
 C[1] = PassB(F[1]);
 C[2] = PassB(F[2]) Done;

After loading the programs and setting the TextureCoordMode, ShadeMode, PixelMode
and FBMode tags appropriately together with the FBBufferN, FBBaseAddrN,
FBBufferEnables and RasterMode tags (as specified in paragraph 7.1.1), the following
additional tags need to be sent to complete the setup:

Tag Requirements
CacheControl Set InvalidateTexturePrimaryCache and InvalidateTextureSecondaryCache bits.
TextureBaseAddressN Set to LUT tile base address.
TextureAddressModeN Set MapType to 0 (1D), Width to LUTsize, PowerOfTwoTexture to 1,

Format to 10 (8888) and Pitch according to pixelsize of LUT entries:
0=8bpp, 1=16bpp, 2=24bpp, 3=32bpp.

TextureIndexModeN Set MapType to 0 (1D), Width to log2(rectwidth) and WrapU to 1.
TextureGlobal0 Set to 1/LUTsize (used in example TCU program).
LUTsize should be specified as the lowest power of two large enough to encompass the
entire LUT (eg 256 for 8bpp indices and 16 for 4bpp indices).
Once this setup has been completed, download can proceed exactly as described in
paragraph 7.1.2.

7.1.4.2 GPIO method

This method is really suitable only for palettes with 8-bit indices, as the Vertex Index Unit
does not support 4-bit indices. Additionally, the LUT must be supplied as unpacked 32-bit
data (destinations lower than 32bpp can still be supported, since they will just discard
unused portions of the data).
The basic premise of the method is to treat each scanline of image data as a sequence of
vertex indices. The Vertex Index Unit sends each 8-bit index to the Vertex Data Unit; this

Image Download Miranda P10 Programmers Guide

7-6 Proprietary and Confidential 3Dlabs

then accesses the appropriate value in the LUT and forwards it on to the Rasteriser as a
PixelData tag.
The first stage of this method is to transfer the LUT into host memory mapped into the
P10 address space, as an array of 32-bit values as described above. The LUT must start
on a 32-bit aligned address. Additionally, each scanline’s packed 8-bit image data must be
transferred into host memory mapped into the P10 address space. It is not necessary for
each scanline to start on a 32-bit aligned address, however.
Next, appropriate programs are loaded into the Pixel Address Unit and Pixel Unit; these
are identical to those used for native downloads, since all the translation occurs prior to
the Rasteriser.
After loading the programs and setting the PixelMode and FBMode tags appropriately,
the FBBufferN, FBBaseAddrN, FBBufferEnables and RasterMode tags should be set
as specified in paragraph 7.1.1, with the PixelSize field in RasterMode set to 4 (since the
GPIO subsystem forwards PixelData to the Rasteriser as unpacked 32-bit data regardless
of the destination depth). Then the Vertex Index Unit and Vertex Data Unit can be set up
as follows:

Tag Requirements
VertexCacheMode Set to 0.
VertexIndexBounds Set Base to 0, Count to 256.
VertexParameterMsgQ Set Tag to P10_PixelData_Tag, Size to 0, Send to 1.
VertexDataBufferM Set Addr to address of LUT (in 32-bit words), DataSize to 0, DataStride

to 0, and ByteSwap according to host memory layout:
0=ABCD (no swap), 1=BADC, 2=CDAB, 3=DCBA

VertexIndexBufferN Set Addr to address of image data (in 32-bit words), IndexSize to 0,
Enable to enable data buffer M only, and ByteSwap according to host
memory layout:
0=ABCD (no swap), 1=BADC, 2=CDAB, 3=DCBA

VertexParameterEnable Set Enable to enable parameter Q only.
VertexDataBufferEnable Set Enable to enable data buffer M only, CacheMode to 0.
VertexIndexBufferEnable Set Enable to enable index buffer N only.

Following setup, each scanline is downloaded by sending a RectanglePosition/
DrawRectangle2D pair as specified in paragraph 7.1.2 followed by a
VertexIndexBufferLookup tag with the following fields:

Field Requirements
First Set to byte offset of the first index in the scanline from the start of the

image data.
Count Set to the number of indices in the scanline (ie scanline width in pixels).

Finally, a CommandID tag can be sent with a unique ID to identify the download; receipt
of this ID value indicates that the GPIO subsystem has completed its part of the download

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-7

operation, and the host memory used to store the image data and LUT may safely be
reallocated.

7.1.5 Downloads with patterned brushes
Section 7.1.1 briefly mentioned that the Pixel Unit program could combine the source
(present in the fragment data registers) with destination and/or solid or patterned brushes.
Solid colour brushes are easily handled by loading the colour into the global registers;
however, patterned brushes require different colours per fragment, and the per-fragment
data registers are already being used to hold the image download data.
The solution is to run a short Pixel Unit program to pre-load the brush into the local
registers of each fragment processor. A suitable Pixel Unit program to load a 24bpp brush
into local registers 12-14 would be:
 Program(pixelBrushDownload24bpp, 0)
 E = Fragment[0] W[12] = PassA(E);
 E = Fragment[1] W[13] = PassA(E);
 E = Fragment[2] W[14] = PassA(E) Done;
After loading this program, the brush data can be loaded directly into the fragment
registers using the UserFragData0 to UserFragData63 tags. The RunPixelProg tag can
then be used to transfer the fragment data into the local registers of each fragment
processor (only the RunAddress field need be specified, with the EnableRun bit set).
Once this operation has been performed, any of the download methods can include the
brush by accessing the relevant local registers in the Pixel Unit program. The only point to
note is that the brush must be reloaded after a context switch, since the local registers are
not saved as part of the context.
For more about Patterned Downloads, see 2D logical operations – Color Pattern
Operations

7.2 Texture maps (download, MIPmap generation)
Texture map downloads need to write the texture data into a memory location from which
the core can subsequently access the data during rasterisation. This data can either be
directly into video memory using the host or it can be downloaded through the core as per
pixel data downloads.
Direct writing of the texture using the core requires no chip setup. Therefore, this section
describes what chip setup is necessary to perform the download through the core.
To perform the download a frame buffer register is pointed at the download position. The
Rasteriser Unit is setup to provide scanline conversion of the download area and to
synchronize this with host provided data. Formatting of the downloaded data is then
performed in the Pixel Unit before the data is finally written out to memory.
A simple example pixel unit program to perform a download of a RGBA texture would look
something like this:

E=Fragment[0] C[0]= PassA(E) ;
E=Fragment[1] C[1]= PassA(E) ;
E=Fragment[2] C[2]= PassA(E) ;
E=Fragment[3] C[3]= PassA(E) Done;

Image Download Miranda P10 Programmers Guide

7-8 Proprietary and Confidential 3Dlabs

In the example program, the data to be output by the pixel unit is received for each
fragment using the “fragment” data registers and simply output to the corresponding
channel of the texture memory. This pixel unit program assumes that a standard Pixel
Address Unit program will have been loaded.
Apart from loading the correct programs into the pixel address unit the destination buffer
needs to be set-up to receive the data. The FBBufferAddr Tag should be set to point to
the download address and the FBBuffer tag should be sent to configure the buffer to the
correct size and depth.

Tag Requirements
FBBufferN See below.
FBBaseAddrN Set to buffer base address.
FBBufferEnables Enable buffer N only.
RectanglePosition Set to the position of the texture (or sub-texture) update.
DrawRectangle2D See below.

The FBBufferN tag should be set up as below:

Field Requirements
Width Width of the texture in tiles (if the texture is not a whole number of tiles

wide then this value is the next)
PixelBytePitch Pitch of the texture.
PixelSize Pitch of the texture – 1.
SubFieldByte Count Pitch of the texture – 1.

The DrawRectangle2D tag should be set up as below:

Field Requirements
Width Width of the texture (or sub-texture update) in pixels
Height Height of the texture (or sub-texture update) in pixels
Operation Sync on host data
IncreasingX true
IncreasingY True – sync on host data needs us to rasterise in a known order
PixelPerScanLine “8” – for pixel unit downloads

For example, the psuedo-code for a typical texture download, size dwWidth * dwHeight *
dwPitch, would look like this:

dwOffsetX = 0;

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-9

dwOffsetY = 0;
dwWidthInTiles = (dwWidth + tileWidth – 1) / tileWidth;

SEND_TAG (FBBaseAddr0_Tag, dwAddrInTiles);

SEND_TAG (FBBuffer0_Tag, FBBuffer(Width, dwWidthInTiles) |
 FBBuffer(PixelBytePitch, dwPitch) |
 FBBuffer(PixelSize, dwPitch - 1) |
 FBBuffer(SubFieldByteCount, dwPitch - 1));

P10_DrawRectangle2D DrawRectangle2D ;
DrawRectangle2D.bits.Width = dwWidth ;
DrawRectangle2D.bits.Height

 = dwHeight ;
DrawRectangle2D.bits.Operation

 = SyncOnHostData ;
DrawRectangle2D.bits.IncreasingX = TRUE ;
DrawRectangle2D.bits.IncreasingY = TRUE ;
DrawRectangle2D.bits.PixelsPerScanline = Pixels8 ;

// rasterise the rectangle
SEND_TAG (RectanglePosition_Tag, dwOffsetX | (dwOffsetY << 16));

SEND_TAG (DrawRectangle2D_Tag, DrawRectangle2D.word);

/* Send the HOLD tag */
SEND_HOLD_TAG(PixelData_Tag, (dwWidth * dwHeight));

for (j=0; j < dwHeight; j++) {
for (i=0; i < dwWidth; i++) {
DWORD dwData = GetColourValue(i,j);

WRITE_32BIT_DATA(dwData);
}
}

To perform sub-texture updates, the above process is identical except that only the area
being updated needs to be rasterised. The position of the drawrectangle2d command
(dwOffsetX, dwOffsetY) needs to be set to the correct position and the width and height
adjusted accordingly. Obviously, only the data for this new area need to be sent.
To perform 3D texture downloads, each slice needs to be downloaded as if it was a
separate 2D texture download. So the process again is identical to the one above.
However, each slice must be downloaded to a new tile aligned address. For example,
between each slice download the download address (dwAddrInTiles) must be updated
between iterations:

 dwAddrInTiles += (dwWidthInTiles*dwHeightInTiles)*dwPitch;

Image Download Miranda P10 Programmers Guide

7-10 Proprietary and Confidential 3Dlabs

Mip-maps are a collection of pre-scaled versions of a single texture. Having the textures
pre-scaled saves the processing time that would be required to scale down larger textures
to make them usable on a distant surface. During rendering, the closest level of detail in
the mip-map is selected so the final scaling process takes less time and introduces fewer
errors. P10 natively supports textures with mip-maps.
To produce the various levels of detail for a mip-mapped texture, the initial level of detail
is scaled to produce an image that is exactly half the size of the previous level. The
method for producing the scaled version depends upon the user, common methods
include using a box filter but any filtering method can be applied.
This texture scaling is repeated until the mip-map reaches 1x1 in size.
When downloading mip-mapped textures to the P10 three things must be ensured:
• The mip-map levels must be stored in the correct order, largest to the smallest.
• The mip-map levels must be stored in contiguous memory.
• Each mip-map level must be downloaded to a tile aligned address.

7.3 Bitmask data
The Bitmask register can be used to perform conversions between monochrome source
data and color pixels. Each write to the register passes thirty-two bits of monochrome data
to be converted into an appropriate TileMask or PixelMask for the Pixel Unit. Since
bitmask operations are always performed in scanline order, each write to the Bitmask
register results in writes to one line of thirty-two pixels across multiple tiles.
There are three common uses for bitmask data: monochrome bitmap downloads to the
framebuffer, font glyph downloads to an offscreen cache, and text rendering from host
memory font glyphs.

7.3.1 Opaque Monochrome Bitmap Downloads
A typical Pixel Unit program for opaque monochrome bitmap downloads will take the
foreground bitmap color in the PixelGlobal0 register, the background bitmap color in
PixelGlobal1, and use the PixelMask to determine the color of each pixel. Here is such a
program for an eight bit destination, which can readily be expanded to greater color
depths.
 Program(MonoDownloadBltS8, 0x10)
 E = Global[0] C[0] = PassA(E) Flag=PM;
 E = Global[4] C[0]& = PassA(E) Done;
The first instruction sets the pixels in the tile to the color specified by the low byte of the
PixelGlobal0 register, and copies the PixelMask into the Flag register. The second
instruction sets the pixels specified in the Flag register to the color specified in the low
byte of the PixelGlobal1 register. After configuring the Rasteriser to generate the
PixelMask from the bitmask data, this program will expand the monochrome Bitmask
register writes into the color destination.
With the pixel unit program loaded, you now need to set up the chip to perform the
download. Typically the CPU will prefer aligned thirty-two bit reads from host memory, so
downloading an unaligned portion of a bitmap would incur a large overhead of masking
and shifting operations. If each scanline of the bitmap is thirty-two bit aligned, the simplest

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-11

solution is to download a larger rectangle, and enable clipping so that only the correct
area is actually written to the framebuffer.
You need only clip excess pixels from the left side of the rectangle as DrawRectangle2D
will automatically clip any to the right, and, by default, bitmask data will not be split across
scanlines; any excess data at the end of a scanline is thrown away. You must use the
UserScissor registers for clipping, as VisRect clipping does not advance the bitmask
when it clips on the left and would therefore render incorrectly.
Note that if you often download monochrome bitmaps which include many lines of a solid
color, you may wish to first scan through those bitmaps to find any such areas and render
them as solid fills instead. While this will increase the host software overhead, solid fills
are rendered much faster than monochrome downloads and you may see an overall
performance gain.
Pseudo-code for a typical download of a bitmap size (w, h) pixels from source bitmap
coordinates (bx, by) to screen coordinates (x, y):

 int endbx, endsx;
 dword *bptr;

 LoadPixelUnitProgram (MonoDownloadBlt);
 UserScissorMinXY = (y << 16 | x);
 UserScissorMaxXY = (0x3fff3fff);
 PixelGlobal0 = ForegroundColor;
 PixelGlobal1 = BackgroundColor;

 endbx = bx + w; // Calculate bitmap end x coordinate
 endsx = x + w; // Calculate screen end x coordinate
 bx &= ~0x1f; // Align start to 32 bits

 w = endbx – bx; // Calculate new width
 x = endsx – w; // Calculate new screen start coordinate
 bptr = bitmap + (by * bitmap_stride) + (bx >> 5); // Calculate pointer to first DWORD

 RasterMode |= (GeneratePixelMask | UserScissorEnable);
 RectanglePosition = (y << 16 | x);
 DrawRectangle2D = 0xE000 | SyncOnBitmask

Finally, write each thirty-two bit dword of bitmap data to the Bitmask register.
For best performance in DMA operations, you should create a Bitmask hold tag to specify
the number of dwords you will write to the Bitmask register (one tag per line or one per
download, depending on the size of your DMA buffer), and you can then perform a simple
memory copy of each scanline from the bitmap to the DMA buffer.
The pixel unit program can easily be extended to support logical operations by expanding
the monochrome data into a temporary register and performing the logical operation
between that register and the destination; you cannot write directly to the destination as
the first instruction operates on every pixel regardless of the bitmask and the result would
be incorrect. An example XOR program:

Image Download Miranda P10 Programmers Guide

7-12 Proprietary and Confidential 3Dlabs

 Program(MonoDownloadBltDSx8, 0x10)
 E = Global[0] W[0] = PassA(E) Flag = PM
 E = Global[4] W[0.1]= PassA(E)
 C[0] = Xor(P[0], B[0]) Done;
This program assumes a standard Pixel Address Unit program will have loaded the
destination tile into P[0]. It then expands the monochrome data into temporary register
W[0] and XORs the destination with that register.

7.3.2 Rendering Host Memory Font Glyphs/Transparent Downloads
Rendering font glyphs and monochrome downloads from host memory is relatively simple
when the background is transparent so that only the foreground pixels should be set in the
destination and the background pixels remain unchanged. You configure the Rasteriser to
generate a TileMask rather than a PixelMask, and then use a normal solid fill program in
the Pixel Unit; the data written to the Bitmask register will be converted into a TileMask,
which will then be used to mask writes from the Pixel Unit to the destination. This will
automatically ensure that only pixels specified by the bitmask data are set in the
destination.
As with opaque monochrome downloads, for transparent monochrome downloads you will
again probably choose to render from a thirty-two bit aligned pixel in your source and clip
the appropriate pixels on the left side of the destination rectangle; the download operation
is almost identical to opaque downloads other than clearing the GeneratePixelMask bit in
the RasterMode register and loading the normal solid fill routine into the Pixel Unit rather
than the opaque download program. See section 7.3.1 above for more details.
Pseudo-code for font glyph rendering, assuming all glyphs are thirty-two bit aligned in host
memory:
 LoadPixelUnitProgram (SolidFill);
 PixelGlobal0 = TextColor;

 RasterMode &= (~GeneratePixelMask); // Generate a TileMask, not a PixelMask
 RectanglePosition = (y << 16 | x);
 Render2D = 0xE000 | SyncOnBitmask

 Finally, write each thirty-two bit dword of the glyph to the Bitmask register.

Again, this operation can readily be expanded to support logical operations, this time by
loading your normal solid color logical operation program into the Pixel Unit. See the 2D
Logical Operations section for more details on logical operation programs.

7.3.3 Font Glyph Downloads To Offscreen Cache
For the best text-rendering performance, you should download font glyphs to an offscreen
memory cache, rather than downloading the glyph every time you wish to render it. As the
glyphs are stored in offscreen memory as monochrome bitmaps, this is a much more
complicated operation than the standard color-expanding downloads.
Because the glyph download operation is integrated so closely with text rendering, it will
be covered in detail in that section.

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-13

7.4 Performing uploads
Uploads are performed in a similar way to downloads, with a 2D rectangle being rendered
to the appropriate position in a buffer. The role of the Pixel Unit in this case is to output
fragment data to the Host Out Unit, where it is forwarded to the Upload DMA Unit for
transfer to the host.

 The main units involved are:
 Rasteriser
 Pixel Address Unit
 Pixel Unit
 Host Out Unit
 Upload DMA Unit
Additionally, monochrome uploads employ the texture pipe; in particular:
 Texture Coordinate Unit
 Texture Address Unit
 Texture Index Unit
 Shading Unit

7.4.1 Upload setup
For colour uploads, only the Pixel Address Unit and Pixel Unit require programs to be
loaded. The Pixel Address Unit program simply needs to send the destination address for
the buffer being used:

 Program(pixelAddressUploadProg, 0)
 SendDestAddrAndTile(buf0, puReg0, Only);

The Pixel Unit program should read the pixel data from the buffer and forward it onto the
Host Out Unit:
 Program(pixelUpload32bppNative, 0)
 C[0.HO] = PassA(P[0]);
 C[1.HO] = PassA(P[1]);
 C[2.HO] = PassA(P[2]);
 C[3.HO] = PassA(P[3]) Done;

If a colour translation is required from source to destination format, this can also be
performed by the Pixel Unit program.
It is important to note that the program must pass the correct amount of data to the Host
Out Unit; if too much data is forwarded, then some will be discarded; if too little data is
forwarded, then the Upload DMA unit will stall indefinitely awaiting the remainder. This is
of particular note with 32bpp and 24bpp (packed) formats.
After loading the programs and setting the PixelMode and FBMode tags appropriately,
the following tags need to be sent to complete the setup:

Image Download Miranda P10 Programmers Guide

7-14 Proprietary and Confidential 3Dlabs

Tag Requirements
FBBufferN Set Width, PixelBytePitch, PixelSize, SubFieldStartByte & SubFieldStartCount as

appropriate for source. Set ReadEnable bit (or specify with
FBBufferReadEnables tag).

FBBaseAddrN Set to buffer base address.
FBBufferEnables Enable buffer N only.
HostOutMode Set OutputUploadTag, OutputSyncTag and OutputUploadDMATags bits.

7.4.2 Upload operation
The Upload DMA Unit supports only linear uploads, and therefore it is necessary to split a
rectangular upload into a series of scanline uploads, each performed using a
DrawRectangle2D of a single pixel in height.
For each scanline, the Upload DMA Unit is first prepared to receive the pixel data with the
UploadDMA tag. The scanline is then rasterised with a RectanglePosition/
DrawRectangle2D pair. Finally a Sync tag is sent with a unique ID; receipt of this ID in
the appropriate SyncID register will indicate the completion of the scanline upload to host
memory (if desired, this final operation can be performed just once, after rasterising all the
scanlines that comprise the upload rectangle).
The UploadDMA tag should be assembled with the following settings, with only the Addr
field requiring alteration for successive scanlines:

Field Requirements
ByteSwap Set according to buffer and host memory layouts:

0=ABCD (no swap), 1=BADC, 2=CDAB, 3=DCBA .
PixelSize Must match size of pixel data produced by Pixel Unit program:

0=8-bit, 1=16-bit, 2=24-bit, 3=32-bit.
Protocol Selects bus protocol:

0=PCI, 1=AGP.
Enable Set to 1.
Count Upload count, in pixels - 1. Must agree with width in DrawRectangle2D.
Addr Upload address, in bus address space. Performance will be optimised if this

is aligned to a pixel boundary.

7.4.3 Monochrome uploads
Uploads to a monochrome bitmap can be efficiently achieved through the use of the
texture subsystem. All units except the texture subsystem are configured as if for a native
8bpp upload, and programs in the Texture Coordinate Unit and Shading Unit assemble
each byte from 8 horizontally consecutive source pixels.
A 2D texture is mapped onto the source rectangle, and for each scanline, a
RectanglePosition/DrawRectangle2D pair is sent, with a horizontal width 1/8th of the true
width of the rectangle (ie the number of bytes of data that will be uploaded). The x- and y-
coordinates specify the offset of the first pixel to be uploaded from the top-left of the
source rectangle (which must be tile-aligned). The program in the Texture Coordinate Unit
uses these coordinates to access the appropriate 8 horizontally consecutive pixels in the

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-15

texture map which are passed to the Shading Unit and assembled into a single byte which
is passed onto the Pixel Unit, and from there onto the Host Out Unit.
Since the smallest unit of data that can be uploaded is a byte, uploads must be performed
as multiples of 8 pixels and so the host must deal with clipping of unwanted pixels at the
left and right edges of each scanline.

7.4.3.1 Programs for monochrome uploads

At the heart of the method is the Texture Coordinate Unit program. The example program
below causes bytes to be assembled with the rightmost pixel in each 8-pixel run placed in
the least significant bit, and the leftmost pixel in the most significant bit. The Shading Unit
programs will in this case be most efficient if the rightmost pixel is handled first, hence this
program selects pixels in “reverse” order. Note also the optimised pairing of ALU and
sequencer instructions:

 Define(ShadeLoad, 1)
 Define(DisableFeedback, 0)
 Define(UpTex, N) // using texture N

 // Assumes Global0[0]=8, Global1[0]=7, Global0[1]=1/rectheight, Global1[1]=1/rectwidth

 Program(TC_TranslateTo1bpp, 0)
 W[0] = MAdd(One, X, Zero, Zero); // calculate x & y coordinates
 W[2] = IntToFloat(PStart[0]);
 W[3] = IntToFloat(PStart[1]);
 W[4] = MAdd(One, Global1[1], Zero, Zero); // A[4]=X wrapping value
 W[0] = MAdd(A[0], Global0[0], One, B[2]); // x=pstart(0)+8*X
 W[1] = MAdd(One, B[3], One, Y); // y=pstart(1)+Y
 // y=pstart(1)+Y
 W[0] = MAdd(One, Global1[0], One, B[0]); // x=pstart(0)+8*X+7

 C[0] = Wrap(A[0], B[4]); // send horizontal index within texture map
 // convert to texture coords for 1st pixel
 C[1] = Wrap(A[1], Global0[1]); // send vertical index within

texture map
 Command(FilterTexture, UpTex, 0, ShadeLoad, DisableFeedback, First) // send to first
 W[0] = MSub(A[0], One, One, One); // & decrement X coord

 LoadCounter(0, 6) // set up loop for middle six pixels

 // set up loop for the middle six pixels
 //

 C[0] = Wrap(A[0], B[4]); // send horizontal index for 2nd pixel
 // & convert to texture coords for 2nd pixel loop:
 Command(FilterTexture, UpTex, 0, ShadeLoad, DisableFeedback, Middle)

 // send to middle
 W[0] = MSub(A[0], One, One, One); // & decrement X coord
 C[0] = Wrap(A[0], B[4]) // send horizontal index for 3rd-8th pixels
 // convert to texture coords for 3rd-8th pixels

Image Download Miranda P10 Programmers Guide

7-16 Proprietary and Confidential 3Dlabs

 DJNZ(0, loop); // & loop back
 Command(FilterTexture, UpTex, 0, ShadeLoad, DisableFeedback, Last)
 // send to last
 Fract(One) Done;

As can be seen, this program initiates three different programs in the Shading Unit; the
first handles initialisation of the upload byte with the first pixel, the middle (for the middle 6
pixels) incorporates each successive pixel into the upload byte, and the last adds in the
final pixel and forwards the completed byte onto the Pixel Unit. Suitable programs for a
24bpp source are as follows:

 Define (Scratch, 0)
 Define (Bitmap, 1)
 Define (Bitmask, 2)

 // Assumes Global[0..2] loaded with 24bpp foreground colour for mono translation

 Program(SU_Translate24bppTo1bpp_First, 0x00)
 W[Bitmask] = PassA(Const[128]_Z); // set Bitmask=bit 7 (msb) // initialise bitmask
 Flag = Sub(T[0]_Z, Global[0]_Z, ==); // test pixel against foreground colour
 Flag &= Sub(T[1]_Z, Global[1]_Z, ==);
 Flag &= Sub(T[2]_Z, Global[2]_Z, ==);
 W[Bitmap] = SelectA(A[Bitmask], Const[0]_Z); // set initial pixel according to test

result
 W[Bitmask] = Add(A[Bitmask], B[Bitmask]) // Bitmask=bit 8 for middle/last

programs
 Done; // because we’ll shift right when adding

it in

 Program(SU_Translate24bppTo1bpp_Middle, 0x08)
 Flag = Sub(T[0]_Z, Global[0]_Z, ==); // test pixel against foreground colour
 Flag &= Sub(T[1]_Z, Global[1]_Z, ==);
 Flag &= Sub(T[2]_Z, Global[2]_Z, ==);
 W[Scratch] = SelectA(A[Bitmask], Const[0]_Z); // select mono pixel value
 W[Bitmap] = Add(A[Bitmap], B[Scratch]) /2 // add in value and shift bitmask right
 Done;

 Program(SU_Translate24bppTo1bpp_Last, 0x10)
 Flag = Sub(T[0]_Z, Global[0]_Z, ==); // test pixel against foreground colour
 Flag &= Sub(T[1]_Z, Global[1]_Z, ==);
 Flag &= Sub(T[2]_Z, Global[2]_Z, ==);
 W[Scratch] = SelectA(A[Bitmask], Const[0]_Z); // select mono pixel value
 C[0] = Add(A[Bitmap], B[Scratch]) /2 // add in value, shift bitmask right & send on
 Done;

The Pixel Address Unit program used is identical to the colour upload program (its only
purpose being to initiate the Pixel Unit program, since this does not require access to data
in the framebuffer).

Miranda P10 Programmers Guide Image Download

3Dlabs Proprietary and Confidential 7-17

Program(pixelAddressUploadProg, 0)
SendDestAddrAndTile(buf0, puReg0, Only);

The Pixel Unit program simply passes on the single byte of data received from the
Shading Unit:
 Program(pixelUploadMono8pixels, 0)
 C[0.HO] = PassB(F[0]) Done;

7.4.3.2 Monochrome upload setup

After loading the programs and setting the TextureCoordMode, ShadeMode, PixelMode
and FBMode tags appropriately (note that the PlaneOriginAtZero bit should be set in
TextureCoordMode), the following tags need to be sent to complete the setup:

Tag Requirements
FBBufferN Set Width, PixelBytePitch, PixelSize, SubFieldStartByte & SubFieldStartCount

as appropriate for source. Set ReadEnable bit (or specify with
FBBufferReadEnables tag).

FBBaseAddrN Set to buffer base address.
FBBufferEnables Enable buffer N only.
CacheControl Set InvalidateTexturePrimaryCache and InvalidateTextureSecondaryCache bits.
HostOutMode Set OutputUploadTag, OutputSyncTag and OutputUploadDMATags bits.
TextureGlobal0 Set to 8 (constant for example TCU program).
TextureGlobal1 Set to 7 (constant for example TCU program).
TextureGlobal2 Set to 1/rectheight (used by example TCU program).
TextureGlobal3 Set to 1/rectwidth (used by example TCU program).
ShadeGlobal0 Set to foreground colour (used by example SU program).
TextureIndexModeN Set MapType to 1 (2D), Width to log2(rectwidth) and Height to

log2(rectheight).
TextureBaseAddressN Set to source rectangle tile base address
TextureAddressModeN Set MapType to 1 (2D), Format to 10 (8888) and Pitch according to source

pixel size: 0=8bpp, 1=16bpp, 2=24bpp, 3=32bpp. The combined
Width/Height/Depth fields should be set to the source buffer width (in
tiles). Set PowerOfTwoTexture to 0.

TexturePlaneStart0 Set low 32 bits to x-offset (in pixels) of left edge into source rectangle.
Set high 32 bits to y-offset (in pixels) of top edge into source rectangle.
These values are used in the example TCU program.

The values rectheight and rectwidth must be powers of two, and should be set to the
lowest power of two large enough to encompass the source rectangle.

7.4.3.3 Monochrome upload operation

Image Download Miranda P10 Programmers Guide

7-18 Proprietary and Confidential 3Dlabs

After the additional setup, the upload procedure for monochrome uploads is identical to
that used for colour uploads as described in paragraph 7.4.2, except that the upload count
and rectangle width should be 1/8th of the true width, and the PixelSize field specified in
the UploadDMA command should be set to 0 (8bpp).

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-1

8
8 Rendering

8.1 Program-to-program parameter consistency

8.2 Selecting the primitive type for the vertex stream target
(triangles, polymode, 2D rectangles/clears)

8.3 Vertex Processing
This section looks at how to implement a standard geometry transformation and lighting
pipeline in the Vertex Shading Unit (section 4.3.2). It is written against the OpenGL
pipeline, but is equally applicable to other APIs.
For a good general discussion of the transformations involved in a geometry pipeline, see
the OpenGL Programming Guide, chapter 3, “Viewing”. A useful analogy is setting up a
camera to take a photograph. The steps are:
3. Positioning: point the camera at a scene, that is, at a viewable volume in the world to

be modelled This is the Viewing Transformation.
4. Composing: Arrange the scene by moving the components. This is the Modelling

Transformation
5. Choose a lens or Zoom setting. This is the Projection Transformation.
6. Scale up or down to meet the size requirements of the display system – Viewport

Transformation.
The following code samples implement partial calculations, which may be pieced together
based on state variables to implement a complete pipeline.

Rendering Miranda P10 Programmers Guide

8-2 Proprietary and Confidential 3Dlabs

8.3.1 Transformation
There are four basic transformations, not all of which are always needed. They involve
transforming the position by:
1. the ModelView matrix to get the eye vertex and
2. the ModelViewProjection matrix to get the projected vertex.

Both of these are 4x4 matrices so the code to do this (assuming the matrices are
transposed) is:

reg[eyeVertex+] = Mul4 (in[pos_x], coeff[MVMat0+])
reg[eyeVertex+] = MAdd4 (in[pos_y], coeff[MVMat4+],
reg[eyeVertex+])
reg[eyeVertex+] = MAdd4 (in[pos_z], coeff[MVMat8+],
reg[eyeVertex+])
reg[eyeVertex+] = MAdd4 (in[pos_w], coeff[MVMat12+],
reg[eyeVertex+])

The 3-space eye vertex obtained in the routine above is needed for local lighting.
The homogeneous eye vertex is also needed for the user clip planes so this is
derived by:
reg[oneOverEyeW] = Recip (reg[eyeVertex_w])
reg[eyeVertex3+] = Mul3 (reg[eyeVertex+],
reg[oneOverEyeW])

3. Similarly the projected vertex is the input position multiplied by ModelViewProjection

matrix. The 1/w value can be found from the projected vertex2 by:
reg[oneOverW] = HRecip (reg[projVertex_w])

Transforming the normal by the Normal matrix. This is done the by code:
reg[normal+) = Mul3 (in[normal_x], coeff[NMat0+])
reg[normal+) = MAdd3 (in[normal_y], coeff[NMat3+],
reg[normal+])
reg[normal+) = MAdd3 (in[normal_z], coeff[NMat6+],
reg[normal+])

If the resulting normal needs to be normalized then the code to do this is:

reg[magSquared] = Dot3 (reg[normal+], reg[normal+])
reg[invMag] = InvSqrt (reg[magSquared])
reg[normal+] = Mul3 (reg[normal+], reg[invMag])

2 See section @@@@ for a discussion of why HRecip and not Recip is used in this situation.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-3

The InvSqrt instruction returns the value from the seed table. This can be refined with
one iteration of the Newton Raphson formula (this takes the approximation result from 10
bits to 20 bits):

r = (3.0 - r * r * x) * r * 0.5;

A more accurate 20bit normalisation based on this approach is:
reg[magSquared] = Dot3 (reg[normal+], reg[normal+])
reg[r] = InvSqrt (reg[magSquared])
reg[rr] = Mul (reg[r], reg[r])
reg[r5] = Mul (reg[r], coeff[ConstandHalf])
reg[rrx] = Mul (reg[rr], reg[magSquared])
reg[rrx] = Add (coeff[ConstantThree], -reg[rrx])
reg[invMag] = Mul (reg[rrx], reg[r5])
reg[normal+] = Mul3 (reg[normal+], reg[invMag])

Rendering Miranda P10 Programmers Guide

8-4 Proprietary and Confidential 3Dlabs

8.3.2 Texture Operation
The texture operation consists of selecting where each input coordinate is coming from
and if it is from a TexGen operation actually doing the texture generation function. The
final 4 component texture is then multiplied by the texture matrix as already covered. In
these examples the texture value will be multiplied through by 1/w.

The four TexGen operations in OpenGL are:
• Using the corresponding input coordinate.

reg[texture_x] = Move (in[texture_x])
• Generating a value using ObjectLinear. TexGen1 holds the coefficients. reg[texture_y] = Dot4

(in[p
• Generating a value using EyeLinear. TexGen2 holds the coefficients.

reg[texture_z] = Dot4 (reg[eyeVertex+], coeff[TexGen2+], reg[texture_z])
• Sphere Map. The TexGen operation for SphereMap is given by:

r = u − 2(n ·n ·u)
µ=2√(r2x+r2y+(r z +1)2)
σ=rx / µ+1/2

τ=ry / µ+1/2

where
r is the reflection vector,
u is the unit vector pointing from the origin to the vertex in eye coordinates,
n is the unit transformed normal into eye space
• is a dot product
The code to implement this is:

// Normalise the eye vertex.
// See earlier code, result left in u.
// normal dot eye
reg[NdotU] = Dot3 (reg[normal+], reg[u+]);
 // r = u - (nn * (NdotU * 2.0));
reg[NdotU] = Mul (reg[NdotU], coeff[ConstantTwo])
reg[nn+] = Mul3 (reg[normal+], reg[NdotU])
reg[r] = Add3 (reg[u+], -r[nn+ // m = r.x * r.x + r.y * r.y + (r.z + 1.0) * (r.z + 1.0);
reg[r_z] = Add (reg[r_z], coeff[ConstantOne])
reg[m] = Dot3 (reg[r], reg[r])
//recipM = InverseSquareRoot (m) * 0.5;
reg[m] = InvSqrt (reg[m]) // seed
reg[mm] = Mul (reg[m], reg[m]) // Newton Raphson approx
reg[m5] = Mul (reg[m], coeff[ConstandHalf])
reg[mmx] = Mul (reg[mm], reg[mm])
reg[rrx] = Add (coeff[ConstantThree], -reg[mmx])
reg[m] = Mul (reg[mmx], reg[m5])
reg[m] = Mul (reg[m], coeff[ConstantHalf])
reg[texture+] = MAdd2 (reg[r+], reg[m],
coeff[ConstantHalf])

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-5

In OpenGL all four TexGen operations can be mixed in any combination (sphere maps are
only legal for s and t) so combinations of the above sets of 4 instructions are usually
collected together. If no texture transformation is needed the results can be multiplied by
1/w and written to the output register.
The texture can be optionally transformed, but must be divided through by w. The
reciprocal of w is available as it is needed for the perspective division just prior to veiwport
mapping. If the texture is to be used as a projective texture then it will have a Q that is not
unity and S/Q, T/Q and maybe R/Q will also be needed.

8.3.3 Fog

The fog calculation takes the vertex z value in eye coordinates and applies one of the
selected equations:

f = e –d*z
 Exponential

f = e -(d*z)2
 Exponential squared

f = (e- z) λ where λ = 1/(ε− s) Linear

where:
d is the fog density
s is the fog start value

ε is the fog end value.

The values d , λ, and ε are held in the FogDensity, FogScale and FogEnd coefficient
registers respectively.
The sections below describe the fog test implementations.

8.3.3.1 FogExp

p = fogDensity * eyeZ;
fog = Exponent (p);

reg[fog] = Mul (coeff[fogDensity], |reg[eyeVertex_z]) // p
 // Exponential approximation.
reg[fog] = Mul (^reg[fog], coeff[ConstantLogOfE])
// ConstantLogofE is ~1.442695
reg[fog] = ALog (-reg[fog])

8.3.3.2 FogExp2

p = (fogDensity * fogDensity) * (eyeZ * eyeZ);
fog = Exponent (p);

reg[fog] = Mul (coeff[fogDensity], |reg[eyeVertex_z]) // p
// Exponential approximation.
reg[fog] = Mul (^reg[fog], ^reg[fog])

Rendering Miranda P10 Programmers Guide

8-6 Proprietary and Confidential 3Dlabs

reg[fog] = Mul (reg[fog], coeff[ConstantLogOfE])
// ConstantLogofE is ~1.442695
reg[fog] = ALog (-reg[fog])

8.3.3.3 FogLinear

eyeZ = Abs (eyeVertex.z).
fog = (fogEnd - eyeZ) * fogScale

// We cannot do an abs and negate at the same time so juggle
// equation around.

reg[fog] = Add (-coeff[fogEnd], |reg[eyeVertex_z])
reg[fog] = Mul (-reg[fog], coeff[fogScale])

8.3.4 Lighting
8.3.4.1 Generalized light pipeline:

A generalised lighting pipeline for light i, is:

// eyeVertex, VP are Vec3.
 if (localLight | localViewer | spotLight | attenuation)
 {
 // Normalised vector from light to eyeVertex and light position
 // in 3-space.
 VP = eyeVertex - light[i].position; // Light position in 3D coords
 magVPSquared = Dot (VP, VP);
 invMagVP = InverseSquareRoot (magVPSquared)
 VP = VP * invMagVP;
 }
else
 {
 VP = light[i].position;
 }

if (spotlight)
 {
 // PDot clamps to zero if negative.
 spotDot = PDot3 (-VP, light[i].spotlightDirection);
 if (spotDot < light[i].cosSpotlightCutoffAngle)
 spotAttenuation = 0.0; // light adds no contribution
 else
 spotAttenuation = Power (spotDot,
 light[i].spotlightExponent);
 }
else
 spotAttenuation = 1.0;

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-7

if (attenuation)
 {
 // Attenuation factors stored as 1 over factor.
 distAttenuation = light[i].constantAttenuation
 light[i].linearAttenuation * invMagVP +
 light[i].quadraticAttenuation * invMagVP * invMagVP;
 }
else
 distanceAttenuation = 1.0;
 attenuation = spotAttenuation * distAttenuation;

if (localViewer)
 {
 halfVector = -eyeVertex;
 halfVector = Norm (halfVector);
 halfVector += VP;
 }
else if (localLight)
 halfVector = VP + Vec3 (0, 0, 1);
else
 halfVector = light[i].halfVector;

if (localLight)
 halfVector = NormQuick (halfVector);
 else if (localViewer)
 halfVector = Norm (halfVector);

 normalDotVP = PDot3 (normal, VP);
 normalDotHalfVector = PDot3 (normal, halfVector);

if (normalDotVP == 0.0)
 powerFactor = 0.0;
else
 powFactor = Power (normalDotHalfVector, material.specularExponent);
 ambientLight += light[i].ambientIntensity * attenuation;
 diffuseLight += light[i].diffuseIntensity * normalDotVP *
 attenuation;
 specularLight += light[i].specularIntensity * powFactor *
 attenuation;
 }

This will calculate the lights ambient, diffuse and specular contributions and accumulate
them. We will now go through the instruction sequences three types of lights: directional,
local lights, and the full lighting model with everything turned on.
These two functions crop enough so we don't want to keep duplicating the same code so
we will define them here as 'macros'.

Rendering Miranda P10 Programmers Guide

8-8 Proprietary and Confidential 3Dlabs

V = Norm (V)
reg[magVSquared] = Dot3 (reg[V+], reg[V+])
reg[r] = InvSqrt (reg[magVPSquared]) // seed
reg[rr] = Mul (reg[r], reg[r]) // Newton Raphson approx
reg[r5] = Mul (reg[r], coeff[ConstantHalf])
reg[rrx] = Mul (reg[rr], reg[magSquared])
reg[rrx] = Add (coeff[ConstantThree], -reg[rrx])
reg[invMagV] = Mul (reg[rrx], reg[r5])
reg[V+] = Mul3 (reg[VP+], reg[invMagV])

p = Power (a, b)
reg[p] = Log (^reg[a]) // log 0 returns 0
reg[p] = Mul (reg[p], reg[b])
reg[p] = ALog (reg[p])

8.3.4.2 Multiple Directional Lights

The minimum program to evaluate the Phong lighting model is given below. The ambient
contribution of the scene and the light together with the emissive contribution of the
material are lumped together as described in the Material section later on.

reg[normalDotVP] = Dot3 (reg[normal+], coeff[lightPosition+])
reg[normalDotHalfVector] = Dot3 (reg[normal+], coeff[lightHalfVector+])
powFactor = Power (reg[normalDotHalfVector], coeff[specularExponent])
reg[t1] = SGE (reg[normalDotVP], coeff[Zero])
reg[specFactor] = Mul (reg[powFactor], reg[t1])
// For the first light the diffuseLight and specularLight // would be written to i.e. the MAdd3

instructions would // be Mul3.
reg[diffuseLight+] = MAdd3(coeff[lightDiffuseIntensity+], ^reg[normalDotVP],

reg[diffuseLight+])
reg[specularLight+] =
MAdd3(coeff[lightSpecularIntensity+],

reg[specFactor], reg[specularLight+])

8.3.4.3 Multiple Local Lights

This type of lights are local lights with no attenuation and an infinite viewer. The eyeVector
has been calculated and converted from its homogeneous representation into 3-space.
The ambient contribution of the scene and the light together with the emissive contribution
of the material are lumped together as described in the Material section later on.

// Normalised vector from the light to the eye
reg[VP+] = Add3 (reg[eyeVertex3+], -coeff[lightPosition+])
reg[VP+] = Norm (VP+)
// short hand, also leaves invMagVP available
// Half vector calculation

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-9

reg[halfVector+] = Add3 (reg[VP+], coeff[constVec0_0_1+])
// We maybe able to avoid the iterations to refine the
// result as the maximum magnitude can only be 2.
// This has not been assumed.
reg[halfVector] = Norm (halfVector)
// reg[normalDotVP] = Dot3 (reg[normal+], reg[VP+])
// This dot product cannot be done directly as it
// requires 3 reads from the scratch registers so this is // broken into several steps.
reg[temp+] = Mul3 (reg[normal+], reg[VP+])
reg[normalDotVP] = Add (reg[temp_x], reg[temp_y])
reg[normalDotVP] = Add (reg[normalDotVP], reg[temp_z])
// reg[normalDotHalfVector] = Dot3 (reg[normal+], reg[halfVector+])
// This dot product cannot be done direclty as it
// requires 3 reads from the scratch registers so this is // broken into several steps.
reg[temp+] = Mul3 (reg[normal+], reg[halfVector+])
reg[normalDotHalfVector] = Add (reg[temp_x], reg[temp_y])
reg[normalDotHalfVector] = Add (reg[normalDotHalfVector], reg[temp_z])
powFactor = Power (reg[normalDotHalfVector], coeff[specularExponent])
reg[t1] = SGE (reg[normalDotVP], coeff[Zero])
reg[specFactor] = Mul (reg[powFactor], reg[t1])
// For the first light the diffuseLight and specularLight // would be written to i.e. the MAdd3

instructions would // be Mul3.
reg[diffuseLight+] = MAdd3
(coeff[lightDiffuseIntensity+],^reg[normalDotVP], reg[diffuseLight+])
reg[specularLight+] = MAdd3
(coeff[lightSpecularIntensity+], reg[specFactor], reg[specularLight+])

8.3.4.4 Full Function Lights

These lights have local viewer, local light, spot lights and attenuation. The eyeVector has
been calculated and converted from its homogeneous representation into 3-space. The
ambient contribution of the scene and the emissive contribution of the material are lumped
together as described in the Material section later on

// Normalised vector from the light to the eye vertex
reg[VP+] = Add3 (reg[eyeVertex3+], -coeff[lightPosition+])
reg[VP+] = Norm (VP+)
// short hand, also leaves invMagVP available
// Spotlight
reg[spotDot] = Dot3 (-reg[VP+], coeff[spotlightDirection+])
reg[spotAtten] = Power (spotDot, coeff[spotlightExponent])
reg[spotOn] = SLE (reg[spotDot],
coeff[cosSpotlightCutoffAngle])
reg[spotAtten] = Mul (reg[spotOn], reg[spotAtten])
// Attenuation
reg[invMagVP2] = Mul (reg[invMagVP], reg[invMagVP])
reg[distAtten] = Move (coeff[constantAttenuation])
reg[distAtten] = MAdd (coeff[linearAttenuation],

Rendering Miranda P10 Programmers Guide

8-10 Proprietary and Confidential 3Dlabs

reg[invMagVP], reg[distAtten])
reg[distAtten] = MAdd (coeff[quadraticAttenuation],
reg[invMagVP2], reg[distAtten])
// Combine both attenuation factors.
reg[attenuation] = Mul (reg[distAtten], reg[spotAtten]
// Half vector calculation
reg[halfVector+] = Add3 (reg[VP+], -reg[normalisedEyeVector])
reg[halfVector] = Norm (halfVector)
// reg[normalDotVP] = Dot3 (reg[normal+], reg[VP+])
// This dot product cannot be done direclty as it requires 3 // reads from the scratch registers so

this is broken into
// several steps.
reg[temp+] = Mul3 (reg[normal+], reg[VP+])
reg[normalDotVP] = Add (reg[temp_x], reg[temp_y])
reg[normalDotVP] = Add (reg[normalDotVP], reg[temp_z])
// reg[normalDotHalfVector] = Dot3 (reg[normal+], reg[halfVector+])
// This dot product cannot be done direclty as it requires 3 reads from
// the scratch registers so this is broken into several steps.
reg[temp+] = Mul3 (reg[normal+], reg[halfVector+])
reg[normalDotVP] = Add (reg[temp_x], reg[temp_y])
reg[normalDotHalfVector] = Add (reg[normalDotHalfVector],
reg[temp_z])
powFactor = Power (reg[normalDotHalfVector],
coeff[specularExponent])
reg[t1] = SGE (reg[normalDotVP], coeff[Zero])
reg[specFactor] = Mul (reg[powFactor], reg[t1])
reg[specFactor] = Mul (reg[specFactor], reg[attenuation])
reg[diffFactor] = Mul (^reg[normalDotVP], reg[attenuation])
// For the first light the ambientLight diffuseLight and
// specularLight would be written to i.e. the MAdd3
// instructions would be Mul3.
reg[ambientLight+] = MAdd3 (coeff[lightAmbientIntensity+],
reg[attenuation], reg[ambientLight+])
reg[diffuseLight+] = MAdd3 (coeff[lightDiffuseIntensity+],
reg[diffFactor], reg[diffuseLight+])
reg[specularLight+] = MAdd3 (coeff[lightSpecularIntensity+],
reg[specFactor], reg[specularLight+]).

Two sided lighting would evaluate the lighting for both sides of the vertex (making use of
the common expressions) and write the front colour to an even colour output register and
the back colour to an odd colour output register. The Parameter Setup Unit (when suitably
enabled) will select one colour out of the pair depending on the surface orientation.
The lighting presented above is all done in eye space as this is guaranteed to work for all
types of lights. Many of the common lighting operations such are directional lights can be
done in object space which avoids the need to transform the normal, saving computation
time.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-11

8.3.4.5 Material

Once the light’s ambient, specular and diffuse contributions have been found they are
combined with the material’s colour as follows. OpenGL 1.2 introduced the idea of a
secondary colour to drive a specular interpolator. This has not been covered here as it is
only a very minor change.
The light and material properties are combined as shown in the following vector
equations:

c = e cm + acm *acs + ambientLight*acm + diffuseLight*dcm +
specularLight*scm
where:
ecm is the emissive material colour (front or back)
acm is the ambient material colour (front or back)
acs is the ambient scene colour
acm is the ambient material colour (front or back)
dcm is the diffuse material colour (front or back)
scm is the specular material colour (front or back)

reg[colour+] = Add3 (coeff[SceneAmbient+],
reg[ambientLight+])
reg[colour+] = Mul3 (reg[colour+], reg[colour+],
coeff[AmbientColour+]
reg[colour+] = Add3 (reg[colour+], reg[c],
coeff[EmissiveColour+]
reg[colour+] = Madd3 (reg[colour+], reg[diffuseLight+],
c[DiffuseColour+], reg[colour+]
out[colour+] = Madd3 reg[colour+], reg[specularLight+],
coeff[SpecularColour+], reg[colour+]
out[alpha] = Move (coeff[MaterialAlpha])

When there is no attenuation on any light it is possible to precompute the ambient and
emissive contribution and store this in the coefficient memory. This will reduce
computation time (10 cycles versus 16) (and also save the ambientLight accumulation in
the lighting calculations):

ambient = e cm + acm *acs + ambientLight*acm

When any of the lights have attenuation the savings are reduced to 13.

ambient = e cm + acm *acs

Rendering Miranda P10 Programmers Guide

8-12 Proprietary and Confidential 3Dlabs

8.3.5 User Clip Planes
The actual clipping against any user clipping planes is done in the Geometry Unit. All that
is needed here is to generate the outcode vector. This is done as follows:

reg[userOutcode] = Move (coeff[ConstantZero])
// Repeat for each user clipping plane
reg[clipDistance] = Dot4 (reg[eyeVertex],
coeff[userClipPlane0])
reg[userOutcode] = ShiftSign (reg[userOutcode],
reg[clipDistance])

The final result is written to the x component of the parameter identified in the
VertexShadingMode register as holding the SpecialParameter.
Note: It is possible to do user clipping in object space and so avoid the need to

generate eye coordinates. The user clip planes in the Vertex Shader and
Geometry Units must be defined in object coordinates.

The ShiftSign instruction does a left shift so the first clip plane tested will end up in bit
position n - 1 of the outcode word where n is the number of clip planes processed in the
program. It is recommended that the first clip plane tested (notionally UserClip 0) always
ends up in bit position 5. This then allows UserClipMask bit 0 and UserClipPlane[0] (in the
Geometry Unit) to correspond to the first clip plane tested in the program.

8.3.6 Projection and Viewport Mapping
The Culling and Geometry Units expect the vertex position data to be in the window
coordinate system all ready to be used for rendering. In the rare case we need to clip
against the viewing frustum the Geometry Unit will spend extra cycles to recover the
information it needs from the window coordinates rather than force the clip coordinates to
be maintained and passed down as part of the processed vertex data. The input vertex
has been transformed by the ModelViewProjection matrix and the result is in the
projVertex registers. The final processing is:

reg[oneOverW] = HRecip (reg[projVertex_w])
reg[ndc+] = Mul3 (reg[projVertex+], reg[oneOverW])
reg[dc] = Mul3 (coeff[viewPortScale+], reg[ncd+])
out[windowCoord+] = Add3 (coeff[viewPortOffset+],
reg[dc+])
out[windowCoord_w] = Move (reg[projVertex_w])

The OneOverW value is also used when writing texture coordinates out as these are also
expected to be divided through by w.
Projection is usually done after clipping so never has to face a problem of what to do
when w is close to zero. A homogeneous vertex with a w of zero is perfectly legal on a
primitive prior to clipping and clipping can yield a valid primitive to draw. It is not possible
for the Geometry Unit to recover the original clip coordinates if the homogeneous w is
zero, hence it can not clip such a primitive correctly. The solution is to avoid doing the

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-13

projection and to mark this vertex as non projected so it can be forced to go through
clipping and avoid the reverse projection in the Geometry Unit.
This is done using the HRecip instruction which will return 1.0 when the denominator is
zero. Multiplying the homogeneous vertex and texture coordinates by one will not change
them. The flagging of the vertex as non projected is handled with no further work here
because the homogeneous w value already accompanies the window coordinates and the
Cull and Geometry Units can test this and take the appropriate action if zero.

8.4 Shading (Gouraud, flat, modulate etc.)
Described from the perspective of Direct3D renderstate control there are three main
approaches to shading supported by P10. In increasing order of complexity and resulting
image flexibility, these are:
• Flat shading
• Gouraud shading
• Texture based per pixel shading techniques
These shading operations are performed in the Shading Unit (SU) using a combination of
the input data available as introduced in Section 4.2.2, “Shading”. These include diffuse
and specular iterated vertex colours available from the plane equation registers, the eight
multi-stage texture registers and a set of global registers that may be externally loaded.
The specific register setup for the texturing pipelines and programming of the texture
coordinate unit are discussed in Section 7.2 on texturing. Here we assume the textures
are available in the input texture registers and concentrate on the program setup and
processing of the shading unit.
Before looking at the programs required for various shading techniques, we will look at the
main mechanisms for the configuration of the unit and the loading of programs.
The ShadeMode register is responsible for controlling the unit’s operation and has the
following field structure:

Field Name Description
TileEnable When set this bit enables a Tile command to start a program running.
TileAddrDefault Holds the 7bit address of the program to run when a subtile is received (assuming

it is enabled with the above field) when the input command fifo prog field is 0.
This field also holds the address of the program to run when the Texture
Coordinate Unit is disabled.

TileAddrFirst Holds the address of the program to run when a subtile is received (assuming it is
enabled) when the prog field is 1.

TileAddrMiddle Holds the address of the program to run when a subtile is received (assuming it is
enabled) when the prog field is 2.

TileAddrLast Holds the address of the program to run when a subtile is received (assuming it is
enabled) when the prog field is 3.

Rendering Miranda P10 Programmers Guide

8-14 Proprietary and Confidential 3Dlabs

PlaneOriginAtZero When set, this forces the plane equation origin to be at zero otherwise the plane
origin is the coordinate of the first tile seen by this unit. This bit would normally
be set when the Parameter Set Up Unit is not being used to set up the plane
equations, such as for 2D operations.

TileEnable effectively enables or disables the unit for tile rasterisation. Assuming this bit
is set, the following four 7bit fields hold the addresses for the position in the shading units
program memory for up to four subprogram components that allow the shading unit to
perform multipass processing. The inputs to the shading unit are from both the texturing
pipe, via a command fifo from the texture filter unit, and directly from the parameter setup
unit. This latter unit is the only interface when the texture coordinate unit (TCU) is
disabled (see TextureCoordMode below). When the texture coordinate unit is in use its
programs work in conjunction with those of the shading unit to allow advanced shading
effects. It is the Command fifo writes from the TCU that contain the prog field mentioned
above to indicate which of the First, Middle and Last program addresses to use. The First
may be used to intialise local working registers in the SU, the Middle for multiple
intermediate passes (e.g. accumulation) and the Last to perform any final processing (e.g.
scaling of accumulated value).
The structure of the TextureCoordMode register and hence the tag used to setup
texturing are described in detail in the section on texture coordinate generation. For now
it is important to know that this register also contains a TileEnable field for unit
enablement/disablement.
Programs are loaded into the shading unit one instruction at a time using the
ShadeProgramData and ShadeProgramAddr registers. ShadeProgramAddr indicates
the position in the shading unit program store where the next instruction, loaded with the
ShadeProgramData register, should be placed. ShadeProgramAddr need only be set
once for each set of consecutively stored instructions, with the address pointer
incremented automatically on receipt of each instruction.
Data can be loaded for global use by the SIMD processors into 32 global byte registers.
These are actually loaded in sets of four registers at a time using the ShadeGlobal0..7
registers, where ShadeGlobal0 will load global registers 0 to 3. These are packed into
the accompanying data word with register 0 at the least significant byte and so on.
Program runs are initiated by either Tile commands from the rasteriser or a
RunShadingProg command which can be used to kick start a program for program
initiation, local register setup etc.

8.4.1 Flat Shading
Flat shading is the simplest form of shading leading to a facetted appearance, whereby
each rendering primitive (e.g. triangle) is assigned a single colour. This colour is
determined as a vertex operation in the transform and lighting subsection of the core with
the flat shading constant colour taken from a particular assigned provoking vertex. The
selection of flat shading or Gouraud shading is determined from the Direct3D API through
the D3DRENDERSTATE_SHADEMODE render state, which may be D3DSHADE_FLAT
or D3DSHADE_GOURAUD. To setup the P10 core for this state requires the setting of
the FlatShading field of the GeometryMode register as below:

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-15

 // Shading.
 switch (pContext->RenderStates[D3DRENDERSTATE_SHADEMODE])
 {
 case D3DSHADE_FLAT:
 pSoftP10->P10GeometryMode.bits.FlatShading = 1;
 break;
 default:
 pSoftP10->P10GeometryMode.bits.FlatShading = 0;
 break;
 }

With this software copy later loaded to the core with:
 SEND_P10_DATA(GeometryMode, pSoftP10->P10GeometryMode.word);

The UseProvoking mask field of the ParameterSetupMode register must also be set.
This is effectively a mask that indicates which of the possible eight different colour
parameters provided with a vertex should actually be treated as flat shaded when it is
indicated that the primitive should be treated as such. For example, the simplest setting
here would be 0xff, causing all colour parameters to be flat shaded. However, in reality,
some colours like specular colour and fog etc. should not be.
Setting the UseProvoking mask will cause the core to internally set the provoking vertex.
However, the choice of which vertex to use will differ depending on the API in use.
OpenGL and D3D use different rules for the selection of the provoking vertex used to
provide the single flat shading colour. For example for a triangle strip OpenGL will use the
last vertex to arrive e.g. (v0,v1,v2), (v1,v2,v0), (v2,v0,v1), while D3D will use the first
(v0,v1,v2), (v1,v2,v0), (v2,v0,v1). P10 is told which rule to use via the Begin command
tag, used to indicate the start of primitive rendering. This has the format:

Bit-
fields

Description

0..3 The lower 4 bits sets up the
primitive type to process on
receiving each new vertex. It has
the following values:

0 Null
1 Points
2 Lines
3 LineLoop
4 LineStrip
5 Triangles
6 TriangleStrip
7 TriangleFan
8 Quads
9 QuadStrip
10 Polygon
11 Grid

4..7 Bits 4…7 holds the grid width in vertices.
8 ProvokingVertexRule, when set causes the D3D provoking vertex rules to be used.

Rendering Miranda P10 Programmers Guide

8-16 Proprietary and Confidential 3Dlabs

For example to render a triangle strip:
 SEND_P10_DATA(Begin, P10_TRIANGLESTRIP | P10_PROVOKING_RULE_D3D);

Where P10_TriangleStrip = 6 and P10_PROVOKING_RULE_D3D = (1 << 8).

When setup correctly for flat shading the Plane equation registers will be automatically
loaded with the constant flat shade colour and an example of a simple shading unit
program would then be as follows:

Define(KdBlue, 0)
Define(KdGreen, 1)
Define(KdRed, 2)

C[0]= PassA(Plane[KdBlue]);
C[1]= PassA(Plane[KdGreen]);
C[2]= PassA(Plane[KdRed]) Done;

As shown here, the register addresses can be indicated by defined constants for
readability

8.4.2 Gouraud Shading (Diffuse and Specular)
With Gouraud shading, the colours provided at each vertex (provided either by the
application or calculated by the hardware lighting calculations) are linearly interpolated
across the primitive to provide the representation of a smooth surface. This is internally
configured as the default alternative to flat shading so that if the GeometryMode register
is not setup for flat shading then the plane equation evaluators will perform the iteration
for each SIMD element. A simple shading unit program that combines both diffuse and
specular components is then as follows:

…
Define(KsBlue, 0)
Define(KsGreen, 1)
Define(KsRed, 2)
W[0]= PassA(Plane[KdBlue]); // Load up the diffuse
W[1]= PassA(Plane[KdGreen]);
W[2]= PassA(Plane[KdRed]);
W[0] = AddS (A[0], Plane[KsBlue]); // Add the specular
W[1] = AddS (A[1], Plane[KsGreen]);
W[2] = AddS (A[2], Plane[KsRed]);
C[0] = Saturate (A[0]);
C[1] = Saturate (A[1]);
C[2] = Saturate (A[2]);

As explained in Section 4.4.4.7, there is a need to saturate the output values to the range
0 to 1 from the internal –8 to +8 format of the unit.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-17

8.4.3 Texture Based Shading
Access to the filtered texture samples generated by the texturing pipe is performed simply
by use of the texture registers accessible to each SIMD element. Some example shading
unit programs using this information are as follows:
// (1)Modulate the texture with the diffuse colour
C[0] = MultS (T[0], Plane[0]);
C[1] = MultS (T[1], Plane[1]);
C[2] = MultS (T[2], Plane[2]);
C[3] = MultS (T[3], Plane[3]);

An example of the code currently generated by the driver is as follows.
PassA(A[0]) Call(FlagMode,0x00);
W[27]= MultS(T[0.C],Plane[0.C]) ;
W[0.C]= PassA(A[27]) Return;
Flag= PassA(A[0]) Call(FlagMode,0x00);
W[27]= MultS(T[0.C],Plane[0.C]) ;
W[0.C]= PassA(A[27]) Return;
Flag&= PassA(A[0]) Call(FlagMode,0x00);
W[27]= MultS(T[0.C],Plane[0.C]) ;
W[0.C]= PassA(A[27]) Return;
W[3]= PassA(Plane[3]) ;
C[0]= PassA(A[0]) ;
C[1]= PassA(A[1]) ;
C[2]= PassA(A[2]) ;
C[3]= PassA(A[3]) Done;
This version shows the use of subroutining with component relative addressing. Here the
.C extension ensures that the register address will be updated to the required component
(0,1,2 or 3) based on the status of the flag mode in the instruction calling the subroutine.
e.g. Flag&= offsets the register address by 2. The use of such subroutines has the
advantage of reducing the overall program size that must be stored..

// (2) Blend the current stage texture with the vertex interpolated diffuse alpha value.
PassA(A[0]) Call(FlagMode,0x02);
W[24] = PassA(Plane[3]) ;
W[26] = PassA(Plane[0.C]) ;
W[27] = Sub(T[0.C],Plane[0.C],0) Call(0x00);
W[27] = MultS(A[27],B[24]) ;
W[27] = Add(A[27],B[26]) Return;
W[0.C] = PassA(A[27]) Return;
Flag = PassA(A[0]) Call(FlagMode,0x02);
W[24] = PassA(Plane[3]) ;
W[26] = PassA(Plane[0.C]) ;
W[27] = Sub(T[0.C],Plane[0.C],0) Call(0x00);
W[27] = MultS(A[27],B[24]) ;
W[27] = Add(A[27],B[26]) Return;
W[0.C] = PassA(A[27]) Return;
Flag& = PassA(A[0]) Call(FlagMode,0x02);

Rendering Miranda P10 Programmers Guide

8-18 Proprietary and Confidential 3Dlabs

W[24] = PassA(Plane[3]) ;
W[26] = PassA(Plane[0.C]) ;
W[27] = Sub(T[0.C],Plane[0.C],0) Call(0x00);
W[27] = MultS(A[27],B[24]) ;
W[27] = Add(A[27],B[26]) Return;
W[0.C] = PassA(A[27]) Return;
W[3] = PassA(Plane[3]) ;
C[0] = PassA(A[0]) ;
C[1] = PassA(A[1]) ;
C[2] = PassA(A[2]) ;
C[3] = PassA(A[3]) Done;

8.5 Texturing
The download and setup of textures for use in rendering is described in Section 7.2,
Texture Maps. This section considers texturing with regard to multi-texture rendering and
provides a discussion of the methods by which P10 is programmed to access its texturing
functionality.

8.5.1 Texture co-ordinate generation (1D, 2D, 3D; sharing the work on
multiple co-ordinate sets)

The generation of the coordinates used to sample the textures in each of P10's texturing
pipes is the responsibility of the programmable Texture Coordinate Unit (TCU) as
introduced in Texture Coordinate Unit (s.4.3.3). Up to eight textures can be processed
per fragment in a single pass.
The operation of the unit is controlled by the TextureCoordMode register, loaded using
the tag of the same name. This has the format:

Field Name Description
FeedbackSource This bit determines where the feedback

data will come from.
0 = Download Image data
1 = Texture pipe

TileEnable When set this bit enables a Tile comand to start a program running.
TileAddr Holds the 7bit address of the program to run when a Tile command is received

(assuming it is enabled).
PlaneOriginAtZero When set, this bit forces the plane equation origin to be at zero otherwise the plane

origin is the coordinate of the first tile seen by this unit.

The TileEnable field effectively enables/disables the use of the texturing pipes in the P10
core. If not set, the tile commands received from the rasteriser will not enable texture
coordinate generation so no texturing takes place. The tile commands instead bypass the
associated texturing units and pass directly to the shading unit for possible flat or Gouraud
shading. The TextureCoordMode command is therefore also passed onto the shading
unit, which inspects it to see if any texturing results will be available.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-19

Up to 128 instructions can be stored in the texture coordinate unit program store. Several
programs can be stored to minimise reloading. The TileAddr field indicates the start
address of the program to be run on receipt of a tile command.
The FeedbackSource field controls the operation of the feedback register port. For
rendering this is generally set to 1 to allow feedback from the texture pipe for operations
such as bump mapping as described in a later subsection. However, it can alternatively
be used to download data directly via the UserFragData0..63 registers. These allow data
to be loaded to the SIMD processors responsible for specific tile elements (pixels).
Programs are loaded into the shading unit one instruction at a time using the
TextureProgramData and TextureProgramAddr registers. TextureProgramAddr
indicates the position within the shading unit program store where the next instruction,
loaded with the TextureProgramData register, should be placed. TextureProgramAddr
need only be set once for each set of consecutively stored instructions, with the address
pointer incremented automatically on receipt of each instruction.
The TexturePlaneScale0..7 register tags are used to load the corresponding registers
that hold the dimensions, as a power of two, of each of the eight possible textures. These
are used in the level of detail (LOD) calculations where it is necessary to know the scale
of each coordinate axis (up to 4D) to estimate the texture minification ratio. These 16bit
values are of the format:

• Bits 0…3 = S scale
• Bits 4…7 = T scale
• Bits 8…11 = R scale
• Bits 12…15 = Q scale

For example, for a 3D cubmap texture:
// Scale third texture coordinate by height (as width == height because
// cubemaps must be square (as well as pow2))
SEND_P10_DATA (TexturePlaneScale0, (pTexture->logHeight << 8) |
 (pTexture->logHeight << 4) |
 pTexture->logWidth);

The texture coordinate unit possesses 32 floating point global registers that can be seen
by all of the SIMD processing elements. The global registers are loaded individually, i.e.
32bits at a time using the TextureGlobal0..32 tags, but internally they are read 64bits at a
time to allow two global register values to be presented to the processor ALUs
simultaneously. Which one of a pair of registers that is actually used is determined by the
assembler syntax Global0 or Global1. For example, the matrix elements for a bump
mapping matrix can be loaded as follows…
 SEND_P10_DATA(TextureGlobal0, AS_ULONG(fBumpMapMatrix[0]));
 SEND_P10_DATA(TextureGlobal1, AS_ULONG(fBumpMapMatrix[1]))
 SEND_P10_DATA(TextureGlobal2, AS_ULONG(fBumpMapMatrix[2]));
 SEND_P10_DATA(TextureGlobal3, AS_ULONG(fBumpMapMatrix[3]));
(where AS_ULONG places the raw 32bit value of the floating point word in the data field)
and then accessed in a program with:
 Define(mat00, 0)
 Define(mat10, 0)

Rendering Miranda P10 Programmers Guide

8-20 Proprietary and Confidential 3Dlabs

 Define(mat01, 1)
 Define(mat11, 1)
 // Transform the perturbation values using the bump transform matrix.
 W[dxt] = MAdd(A[dx], Global0[@mat00], B[dy], Global1[@mat10]);
 W[dyt] = MAdd(A[dx], Global0[@mat01], B[dy], Global1[@mat11]);

TCU programs are initiated in response to tile commands from the rasteriser. However,
it is also possible to kick start a program run manually using the RunTextureProg
command tag. The least significant 7 bits of the data word accompanying this tag
contains the starting address of the program to be run. Note that this will only run if bit 31
of the data is set.
Two important registers that must be set to configure texturing are the
TextureIndexMode0..7 and TextureIndexMipControl0..7 registers. These control how
the coordinates generated in the TCU should be interpreted and the manner of the filtering
to be performed, for each of the eight possible active texture stages. The structures of
these registers are given below with the meaning of each field self-explanatory..
The TextureIndexMode0..7 register:

Field Name Description
Width Holds the width/height of the texture map as a power of two. The legal range of

values for this field is 0 (= 1) to 13 (= 8192). If a border is present then the
maximum value is 12, and for a 3D map it is 10 without a border, or 9 with a border.

Height

Depth Holds the depth (i.e. number of slices) of the texture map as a power of two. The
legal range of values for this field is 0 (= 1) to 10 (= 1024). This field should be set to 0
for a 1D or 2D map.

Border When set this indicates there is a one texel border surrounding the texture map.
MapType Selects the type of map and how many axis it

has.
0 = 1D texture map
1 = 2D texture map
2 = 3D texture map
3 = Cube map

WrapU[3] These fields selects how the u, v and w
coordinate are to be wrapped to fit on the
texture map.

0 = Clamp 1 = Repeat
2 = Mirror
3 = ClampEdge
4 = ClampBorder

WrapV[3]
WrapW[3]

MagnificationFilter Selects the minification filter to use. 0 = Nearest 1 = Linear
MinificationFilter Selects the minification filter to use 0 = Nearest 1 = Linear

2 = NearestMipNearest
3 = NearestMipLinear
4 = LinearMipNearest
5 = LinearMipLinear

FilterBank When the filter mode is Nearest or Linear then this field will specify which filter
bank to use in the Primary Texture Cache. Use of alternating banks will reduce
thrashing between the texture maps in the cache.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-21

The TextureIndexMipControl[0..7] register:

Field Name Description
MinLod This field holds the minimum level of detail (lod) value. Any input lod less than this

will be clamped to this value. Its format is 4.8 unsigned fixed point.
MaxLod This field holds the maximum level of detail (lod) value. Any

input lod greater than this will be clamped to this value. Its
format is 4.8 unsigned fixed point.

BaseLevel This 4bit field holds the map level which should be treated as level 0. Set to 0.
MaxLevel This 4bit field holds the map level which should be treated as the last level in the mip-

map chain. Set to 14.

8.5.2 Colour Lookup
This and the following sections consider the programs required for texture coordinate
generation for actual texturing tasks. Perhaps the most common operation for texture
coordinate generation is in the sampling of a 2D image texture map. The task of the
texture coordinate unit program is to generate for each tile fragment, the interpolated
perspectively correct texture coordinates and, depending on the type of filtering required,
an estimate of the texture minification ratio for level of detail calculation. Unlike the vertex
colours in the shading unit, the coordinates for each fragment are not generated directly
by fixed function hardware, but by a user supplied program.
For 2D texture mapping the perspectively correct coordinates s and t for each pixel
fragment are calculated by linearly interpolating the vertex supplied linear coordinates S, T
and Q and applying:
 s = S/Q and t = T/Q
Where the S,T and Q values are initially determined for each vertex as a function of the
parametrically supplied texture coordinates, multiplied by Q, a function of depth.
The texture minification (or compression) indicates how compressed or stretched a
texture is when mapped to the screen pixels and so influences the filtering method used.
This minification can be estimated from the change in s and t with respect to a change in
the screen coordinate x and y. These partial derivatives can be calculated analytically as
below:
 ds/dx = ((dS/dx)Q - (dQ/dx)S) / Q2
ds/dy, dt/dx and dt/dy are calculated similarly.
The minification may then be estimated from these values, for example by simple
magnitude inspection to find the greatest axis of compression.
The plane equation partial derivatives and start values for the linearised coordinates S, T
(plus possibly R) and Q are presented to the TCU by the parameter setup unit. An
example program for MIPmap based texture lookup is then as follows:

 // Evaluate the texture coordinate plane equations.
 W[Q] = MAdd(dPdx[@Q], X, dPdy[@Q], Y) SavedP;
 W[S] = MAdd(dPdx[@S], X, dPdy[@S], Y);

Rendering Miranda P10 Programmers Guide

8-22 Proprietary and Confidential 3Dlabs

 W[T] = MAdd(dPdx[@T], X, dPdy[@T], Y);

 // Add in the origin values.
 Q2 = W[Q] = MAdd(PStart[@Q], One, A[Q], One);
 W[S] = MAdd(PStart[@S], One, A[S], One);
 W[T] = MAdd(PStart[@T], One, A[T], One);

 // Calculate the reciprocal of Q.
 Div(One, B[Q]);

 // Calculate the partial derivatives using the more accurate analytical method.
 LoadMax = MSub(dPdx[@S], A[Q], dPdxSaved, B[S], PlaneScale[@S]);
 MergeMax = MSub(dPdx[@T], A[Q], dPdxSaved, B[T], PlaneScale[@T]);
 MergeMax = MSub(dPdy[@S], A[Q], dPdySaved, B[S], PlaneScale[@S]);
 MergeMax = MSub(dPdy[@T], A[Q], dPdySaved, B[T], PlaneScale[@T]);

 // Wrap the S and T coordinates, performing the perspective correction by
 // multiplying with the reciprocal of Q. Output the wrapped coords with the
 // calculated mipmap lod value.
 C[0] = Wrap(DivResult, B[S]);
 C[1] = Wrap(DivResult, B[T]);
 C[3] = LOD FloatToInt(One) Return;

Where dPdx, dPdy and PStart are the plane equation registers holding the interpolation
information for the vertex coordinates S,T and Q supplied by the parameter setup unit.
The @ used in the plane equation register reads above causes the use of relative
addressing. This is useful allowing the same code to be used for multiple plane equation
information for the different texture stages; the Return at the end denotes this as a
subroutine, which may be called multiple times. Such relative addressing can be similarly
used for global registers. All that is required is that the plane equation and global register
base address is setup in an instruction prior to use of the relative addressing. This can be
done with the PlaneBase(pbase), GlobalBase(gbase) or combined
PlaneGlobalBase(pbase,gbase) instruction options. The use of such relative addressing
is demonstrated in the bump mapping program presented in the next section. Other
features include the indirect addressing operator % demonstrated in the cube mapping
subsection.

8.5.3 Bump Environment Mapping
This section describes the programming requirement for the powerful technique of bump
environment mapping. This technique utilises the feedback path of the P10 texture pipe
to allow the sampled result of one texture to be used to modify the texture coordinates
used to sample another. That subsequent texture could be a simple 2D image, resulting
in a distortion or patterning of its appearance (for example to simulate an underwater
effect), or an environment or cube map in which the perturbed coordinates are themselves
directional vectors such as surface normals or reflection vectors.
Let us consider the DirectX7 texturing operation D3DTOP_BUMPENVMAP. A bump map
is sampled to produce (in the case of a 2D bump map) the signed perturbation values dU
and dV to be fed back. These are then transformed by a 2x2 matrix such that:

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-23

dU' = dU.mat00 + dV.mat10
dV' = dU.mat01 + dV.mat11

These bump map matrix element values are supplied by the application and loaded into
TCU global registers. An example of a multi-texture TCU program to perform this
environment bump mapping is as follows:

//Stage 0 - Base Texture
PlaneGlobalBase(0,0) MAdd(A[0],A[0],A[0],B[0]) ;
W[9]= MAdd(dPdx[@3],X,dPdy[@3],Y) SavedP ;
W[0]= MAdd(dPdx[@0],X,dPdy[@0],Y) ;
W[3]= MAdd(dPdx[@1],X,dPdy[@1],Y) ;
Q2= W[9]= MAdd(PStart[@3],One,A[9],One) ;
W[0]= MAdd(PStart[@0],One,A[0],One) ;
W[3]= MAdd(PStart[@1],One,A[3],One) ;
Div(One,B[9]) ;
LoadMax= MSub(dPdx[@0],A[9],dPdxSaved,B[0],PlaneScale[@0]) ;
MergeMax= MSub(dPdx[@1],A[9],dPdxSaved,B[3],PlaneScale[@1]) ;
MergeMax= MSub(dPdy[@0],A[9],dPdySaved,B[0],PlaneScale[@0]) ;
MergeMax= MSub(dPdy[@1],A[9],dPdySaved,B[3],PlaneScale[@1]) ;
C[0]= Wrap(DivResult,A[0]) ;
C[1]= Wrap(DivResult,A[3]) ;
C[3]=LOD FloatToInt(One) ;
Command(FilterTexture,0,0,1,0,Default) MAdd(A[0],A[0],A[0],B[8]) ;

//Stage 1 - Bump Map Texture
PlaneGlobalBase(4,2) MAdd(A[0],A[0],A[0],B[0]) ;
W[9]= MAdd(dPdx[@3],X,dPdy[@3],Y) SavedP ;
W[0]= MAdd(dPdx[@0],X,dPdy[@0],Y) ;
W[3]= MAdd(dPdx[@1],X,dPdy[@1],Y) ;
Q2= W[9]= MAdd(PStart[@3],One,A[9],One) ;
W[0]= MAdd(PStart[@0],One,A[0],One) ;
W[3]= MAdd(PStart[@1],One,A[3],One) ;
Div(One,B[9]) ;
LoadMax= MSub(dPdx[@0],A[9],dPdxSaved,B[0],PlaneScale[@0]) ;
MergeMax= MSub(dPdx[@1],A[9],dPdxSaved,B[3],PlaneScale[@1]) ;
MergeMax= MSub(dPdy[@0],A[9],dPdySaved,B[0],PlaneScale[@0]) ;
MergeMax= MSub(dPdy[@1],A[9],dPdySaved,B[3],PlaneScale[@1]) ;
C[0]= Wrap(DivResult,A[0]) ;
C[1]= Wrap(DivResult,A[3]) ;
C[3]=LOD FloatToInt(One) ;
Command(FilterTexture,1,1,0,1,Default) MAdd(A[1],A[1],A[1],B[9]) ;

//Stage 2 - Environment Map Texture

PlaneGlobalBase(8,4) MAdd(A[0],A[0],A[0],B[0]) ;
W[9]= MAdd(dPdx[@3],X,dPdy[@3],Y) SavedP ;
W[0]= MAdd(dPdx[@0],X,dPdy[@0],Y) ;
W[3]= MAdd(dPdx[@1],X,dPdy[@1],Y) ;
Q2= W[9]= MAdd(PStart[@3],One,A[9],One) ;

Rendering Miranda P10 Programmers Guide

8-24 Proprietary and Confidential 3Dlabs

W[0]= MAdd(PStart[@0],One,A[0],One) ;
W[3]= MAdd(PStart[@1],One,A[3],One) ;
Div(One,B[9]) ;
LoadMax= MSub(dPdx[@0],A[9],dPdxSaved,B[0],PlaneScale[@0]) ;
MergeMax= MSub(dPdx[@1],A[9],dPdxSaved,B[3],PlaneScale[@1]) ;
MergeMax= MSub(dPdy[@0],A[9],dPdySaved,B[0],PlaneScale[@0]) ;
MergeMax= MSub(dPdy[@1],A[9],dPdySaved,B[3],PlaneScale[@1]) ;
W[0]= MAdd(DivResult,B[0],Zero,Zero) ;
W[3]= MAdd(DivResult,B[3],Zero,Zero) ;
MAdd(A[0],A[0],A[0],B[0]) WaitForFeedbackData;
W[10]= MAdd(One,One,Zero,Zero,7) ;
W[14]= IntToFloat(Feedback(8,0,Zero)) ;
W[13]= IntToFloat(Feedback(8,8,Zero)) ;
W[14]= MSub(A[14],One,B[10],One,-7) ;
W[13]= MSub(A[13],One,B[10],One,-7) ;
W[10]= MAdd(A[14],Global0[@1],B[13],Global1[@1]) ;
W[0]= MAdd(A[0],One,B[10],One) ;
W[10]= MAdd(A[14],Global0[@2],B[13],Global1[@2]) ;
W[3]= MAdd(A[3],One,B[10],One) FinishedWithFeedbackData;
C[0]= Wrap(A[0],One) ;
C[1]= Wrap(A[3],One) ;
C[3]=LOD FloatToInt(One) ;
Command(FilterTexture,2,2,1,0,Default) MAdd(A[2],A[2],A[2],B[10]) Done;

The Command fifo write commands are broken down as follows:

Command(command, texID, destReg, loadshading, enablefeedback, prog)

The code shows the TCU program for a three-texture application, each stage partitioned
by the appropriate command fifo writes indicating when feedback is initiated
(enablefeedback) and the target texture registers in the shading unit (destReg).
Although the bump map texture stage does not contribute any texel data itself to the
texture registers in the shading unit, it is necessary to pass on the colours of the
proceeding stage (if any, otherwise the diffuse colour) if the environment stage texture
operation requires it. For example consider the DX7SDK sample BumpEarth; in that
sample a patterned base texture is applied to stage N (e.g. image of an Earth map), a
bump map to stage N+1 (e.g. based on relief map of the Earth), and an environment map
to stage N+2 (e.g. simple highlights or a reflection map). Stage N+2 might then have a
simple ADD texture operation to blend the results of the Earth image with the relief
perturbed environment map. Apart from ensuring this colour is passed through no
additional shading unit code is required for a bump environment map texture operation..
An extension to bump mapping that does require additional shading unit programming
occurs with the introduction of luminance. Consider the texturing operation
D3DTOP_BUMPENVMAPLUMINANCE. This is essentially the same as that given above
with the important difference that a third component, luminance, is now sampled from the
bump map and used to modulate the intensity of the resulting sampled texels of the
environment map. The formula for this luminance part is:

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-25

L' = L.Scale+0ffset
Where L' is then used to modulate the environment map stage's filtered texels before their
colour is used to blend with that of the base texture. The significance here is that while
the luminance data is taken from the bump map in the same way as the coordinate
perturbation values dU and dV, it is applied to the results of the environment map and not
the coordinates used to sample it. Therefore the luminance component is not sent via the
feedback fifo to the TCU, but passed to the shading unit (SU) requiring the additional SU
functionality. The luminance value scale and offset are applied in the shading unit with
the values having been loaded into global registers in the shading unit. As well as
calculating L', this value must then be used to modulate the RGB channels of the
environment map. This has the added effect that the results of the environment map
stage (e.g. Stage N+2) are now no longer stored in shading unit texture registers, but in
local registers and that stages texture operation (e.g ADD in the given example) must
adjust appropriately.
Unbounded Luminance Scale and Offset: While L' and L are expected to be limited to
the range 0-1, the scale and offset values are not. To allow values greater than 1 to be
loaded for scale and offset via the 8bit shading unit global registers, an arbitrary unsigned
fixed point format of 2.6 was selected. The driver converts the value to this range and the
shading unit expands from this to its internal s.3.8 format in a load from the global register
to an internal working register.
Signed Textures and their download: A feature of bump normal perturbation maps is
that they contain signed data. The dU and dV parts of the bump map are generally
created and stored by applications as two's complement signed integers. Although the
TCU could correctly handle these by reading from the feedback fifo with sign extension
and then performing a signed IntToFloat conversion, it is the texture filter unit that
performs the filtering of the bump map and this uses interpolators that do not consider the
signed case. To allow for the correct filtering of these values, the driver intercepts the
download of these textures and introduces a +128 bias to the 2's complement 8bit signed
fields. For simplicity lower resolution formats such as 6L5V5U bump maps are converted
to 8L8V8U at this time. The texture is then filtered as a 0-255 intensity image and the
bias removed, as shown in the program above, as the feedback dU and dV data is
converted from integer to float, unbiased with a subtraction of 128 and finally scaled to the
required +-1 range.

8.5.4 Cube Mapping
Cubemapping is a relatively simple extension to 2D texture mapping from the point of view
of the chip. The essence of the technique is that an app provides a texture with six faces (
optionally mipmapped) which correspond to the positive and negative directions of each
of the three axes (X, Y and Z) and texture coordinates that act as reflection vectors.
These reflection vectors are then used to choose a particular face from the cubemap and
within that face to generate a set of 2D texture coordinates.
The face is chosen by finding the major (largest) component of the reflection vector (
encoded as a three component texture coordinate). The other two components are then
divided by this major component which effectively projects those two components on to
the chosen face. Because the faces are oriented looking into the centre of the cube which
they form, the signs of the generated 2D texture coordinates must be adjusted according
to which face is chosen. Additionally the projected coordinates are in the range [-1,1] and
so they must be translated and scaled into the range [0,1] for normal texture mapping.

Rendering Miranda P10 Programmers Guide

8-26 Proprietary and Confidential 3Dlabs

The division that performs the projection is also in exactly the right place to perform the
perspective divide - the 3D texture coordinates (i.e. the reflection vector) would have
been scaled by the reciprocal of homogeneous w (RHW) in the Vertex Shader unit and
then RHW gets divided out again during the face projection.
It is possible to compute the level of detail (LOD) for mipmapping analytically by
computing the full derivatives from the partial derivatives defining the plane equations and
the formula for the derivative of a quotient (due to the divide by the major component).
The partial derivatives must be scaled to match the transformation of the 2D coords from
[-1,1] to [0,1]. Various approximations to the LOD can be made by combining the full
derivatives in different ways e.g. taking the maximum of the absolute values and/or using
an octagonal approximation to the square root of the sum of the squares of the
derivatives. Just as for 2D mipmapping the miplevels of a cubemap must be laid out in a
fixed pattern - all of the miplevels for all of the faces are contiguous in graphics memory. A
cubemap must have square, power-of-two faces and so therefore must any mipmap
levels. The chip computes the total size of one face's mipmap chain (including any
rounding up to tile units for the small miplevels) and uses that as a stride to access the
miplevels of the other faces. This means that the driver must always allocate space for all
the miplevels down to 1x1 even if the app does not provide them.
The plane equation evaluation requires a planeScale value for each dimension of the
texture map to convert from texture coordinates into texels. As a cubemap must be
square all three dimensions should be set to the same planeScale value e.g. 8 for a
256x256 cubemap.
The chip does not provide direct support for filtering across the faces but this can be
implemented by using texture borders to replicate the edge texels of the adjacent faces on
to a given face. However DXT compressed textures cannot have borders and so this
techniques will not work for DXT mipmapped cubemaps.
The chip provides a TextureCoord Unit instruction called CubeSort which determines the
major component and sets up the data to support an indirect addressing mode (indicated
with the % symbol) so that the major component is always in a known place from the
point of view of the TCU program. This indirect addressing mode, which is solely for the
use of cube-mapping programs, also automatically accounts for the sign adjustments
mentioned above. To support this indirect addressing mode the texture coordinates and
their two derivatives must be laid out in a fixed manner i.e..
 Define(reg_S, 0)
 Define(reg_dSdx, 1)
 Define(reg_dSdy, 2)
 Define(reg_T, 3)
 Define(reg_dTdx, 4)
 Define(reg_dTdy, 5)
 Define(reg_R, 6)
 Define(reg_dRdx, 7)
 Define(reg_dRdy, 8)

The other registers can be allocated in any manner that doesn't conflict with above
mapping e.g.
 Define(reg_deriv0, 10)
 Define(reg_deriv1, 11)

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-27

 Define(reg_dsdx_, 12)
 Define(reg_dsdy_, 13)
 Define(reg_dtdx_, 14)
 Define(reg_dtdy_, 15)

 Define(reg_dx, 7)
 Define(reg_dy, 8)

 Define(reg_S_, 7)

The following TCU cubemapping program using the octagonal approximation to calculate
the LOD. The global registers contain the magic values (11/32) and (21/32) and
CubeScale is -1.

 // Extract the current stage's texture coordinates from the plane equations.
 W[reg_S] = MAdd(dPdx[@plane_S], X, dPdy[@plane_S], Y);
 W[reg_T] = MAdd(dPdx[@plane_T], X, dPdy[@plane_T], Y);
 W[reg_R] =MAdd(dPdx[@plane_R], X, dPdy[@plane_R], Y);

 // Add in the origin values.
 W[reg_S] = MAdd(PStart[@plane_S], One, A[reg_S], One);
 W[reg_T] = MAdd(PStart[@plane_T], One, A[reg_T], One);
 W[reg_R] =MAdd(PStart[@plane_R], One, A[reg_R], One);

 LoadDivResult(A[reg_S]);
 CubeSort(DivResult, A[reg_T], B[reg_R]);

 // Start the reciprocal of R calculation and load R into the lod logic.
 Div(One, B[%reg_R]);
 Q2 = Select(A[%reg_R], A[%reg_R]);

 // Move the pPdx and dPdy values to the local registers so indirect
 // addressing can be used. Scale by the planescale values.

 W[reg_dSdx] =MAdd(dPdx[@plane_S], One, Zero, Zero, PlaneScale[@plane_S]);
 W[reg_dTdx] =MAdd(dPdx[@plane_T], One, Zero, Zero, PlaneScale[@plane_T]);
 W[reg_dRdx] =MAdd(dPdx[@plane_R], One, Zero, Zero, PlaneScale[@plane_R]);

 W[reg_dSdy] =MAdd(dPdy[@plane_S], One, Zero, Zero, PlaneScale[@plane_S]);
 W[reg_dTdy] =MAdd(dPdy[@plane_T], One, Zero, Zero, PlaneScale[@plane_T]);
 W[reg_dRdy] =MAdd(dPdy[@plane_R], One, Zero, Zero, PlaneScale[@plane_R]);

 // Calculate the partial derivatives analytically. Scale by 1/R^2 will be done in the lod unit.
 // NOTE: This suffers from stalls, some of which could be avoided.

 W[reg_deriv0] = MAdd(A[%reg_R], B[%reg_dSdx], Zero, Zero);
 W[reg_deriv1] = MAdd(A[%reg_S], B[%reg_dRdx], Zero, Zero);
 W[reg_dsdx_] = MSub(A[reg_deriv0], One, B[reg_deriv1], One, CubeScale);

Rendering Miranda P10 Programmers Guide

8-28 Proprietary and Confidential 3Dlabs

 W[reg_deriv0] = MAdd(A[%reg_dTdx], B[%reg_R], Zero, Zero);
 W[reg_deriv1] = MAdd(A[%reg_T], B[%reg_dRdx], Zero, Zero);
 W[reg_dtdx_] = MSub(A[reg_deriv0], One, B[reg_deriv1], One, CubeScale);

 W[reg_deriv0] = MAdd(A[%reg_dSdy], B[%reg_R], Zero, Zero);
 W[reg_deriv1] = MAdd(A[%reg_S], B[%reg_dRdy], Zero, Zero);
 W[reg_dsdy_] = MSub(A[reg_deriv0], One, B[reg_deriv1], One, CubeScale);

 W[reg_deriv0] = MAdd(A[%reg_dTdy], B[%reg_R], Zero, Zero);
 W[reg_deriv1] = MAdd(A[%reg_T], B[%reg_dRdy], Zero, Zero);
 W[reg_dtdy_] = MSub(A[reg_deriv0], One, B[reg_deriv1], One, CubeScale);

 // Take abs values

 W[reg_dsdx_] = AMax(A[reg_dsdx_], Zero);
 W[reg_dtdx_] = AMax(A[reg_dtdx_], Zero);
 W[reg_dsdy_] = AMax(A[reg_dsdy_], Zero);
 W[reg_dtdy_] = AMax(A[reg_dtdy_], Zero);

 // Compute octagonal approx. to Euclidean distance

 W[reg_deriv0] = MAdd(A[reg_dsdx_], Global0[global_fact0], B[reg_dtdx_],

global0[global_fact0]);
 W[reg_deriv1] = AMax(A[reg_dsdx_], B[reg_dtdx_]);
 W[reg_dx] = MAdd(A[reg_deriv0], One, B[reg_deriv1], Global1[global_fact0]);

 W[reg_deriv0] = MAdd(A[reg_dsdy_], Global0[global_fact0], B[reg_dtdy_],

Global0[global_fact0]);
 W[reg_deriv1] = AMax(A[reg_dsdy_], B[reg_dtdy_]);
 W[reg_dy] = MAdd(A[reg_deriv0], One, B[reg_deriv1], Global1[global_fact0]);

 // Take the max of the lengths in x and y and take log2 (implicit in LoadMax special function

)

 LoadMax = AMax(A[reg_dx], B[reg_dy]);

 // Calculate (%S/%R + 1.0) * 0.5 (and similarly for %T).
 // This is the division by the major coordinate and rescaling to [0,1].

 W[reg_S_] = MAdd(DivResult, A[%reg_S], One, One, CubeScale);
 W[reg_T] = MAdd(DivResult, A[%reg_T], One, One, CubeScale);

 // Convert to the correct output format.

 C[0] = Wrap(A[reg_S_], One);
 C[1] = Wrap(A[reg_T], One);
 C[3] = LOD FloatToInt(One); // Op=nop

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-29

8.6 Localbuffer processing (setting up the mode registers)
This section describes the programming required to setup the local buffer processing on
the P10 core, largely from the perspective of the Direct3D driver. More specific
application details, such as for multi-sample antialiasing, are included in the relevant
sections of the document.
Local buffer memory management and base address control are setup with the LBMode
tag. This has the following fields.

Field Name Description
SameTileEnable When set this enables 'same tile' caching. If this tile has the same coordinates as the

previous tile then this provides a performance optimization where successive
primitives are likely to be in the same tile.

Width This field holds the width in tiles of the buffer. The range is 0…2047.
PixelBytePitch This field defines the offset between tiles in memory, normally equal to the depth

of a tile in bytes. The range is 1…8.
OffsetBetween
Buffers

This field holds the offset between successive multi-sample buffers. It is measured
in multiples of 1024 byte tiles.

The Width and PixelBytePitch fields are set based on the format of the local buffer surface
target in use. Note that this refers to the whole local buffer including both depth and
stencil (and GID for OpenGL).
For rendering SameTileEnable is usually set to 1 to take advantage of any optimization
that may result.
Individual control of the Depth, Stencil and GID buffers is performed with the DepthMode,
StencilMode and GIDMode registers.
The structure of the GIDMode is as follows:

Field Name Description
Enable When set this enables GID testing to be done.
Reference Used when Enable set. Holds the GID value to test each pixel against.
Present When set this indicates the local buffer pixel format includes the GID field. GID

field is always the least significant byte if present.
EarlyExitProcessing When set this enables early exit processing for the GID, stencil and depth tests.

Of particular significance here is the EarlyExitProcessing which provides optimisation
through enabling early termination of tests. As said, this affects stencil and depth tests
and so is relevant even when there is no GID present.
The structure of the StencilMode register is:

Field Name Description

Rendering Miranda P10 Programmers Guide

8-30 Proprietary and Confidential 3Dlabs

Enable When set this enables the stencil test and the replacement of the stencil value dependent
on the outcome of the stencil and depth test. Else always pass and stencil data not
updated.

DPpass How stencil buffer updated when both
stencil and depth test pass.

0 = Keep (i.e. local buffer value not
changed)
1 = Zero
2 = Replace with StencilData.Reference
3 = Increment (with saturation)
4 = Decrement (with saturation)
5 = Invert
6 = Increment (with wrapping)
7 = Decrement (with wrapping)

DPfail How stencil buffer updated when stencil
test passes and depth test fails.

Sfail How stencil buffer updated when stencil
test fails.

CompareFunction Selects the test used to compare the
buffer stencil value with the reference
supplied in StencilData.

0 = Never
1 = Less
2 = Equals
3 = Less Equals
4 = Greater
5 = Not Equal
6 = Greater Equal
7 = Always

Present When set this indicates the local buffer pixel format includes a stencil field. The stencil
field is always the byte following the GID field (if present) or byte 0 if there is no GID
field.

As an example of setting up this register consider the Direct3D case. For
D3DRENDERSTATE_STENCILENABLE false all fields are zero. When true Present and
Enable are set and the test fields assigned the values indicated by
D3DRENDERSTATE_STENCILFAIL (Sfail), D3DRENDERSTATE_STENCILZFAIL
(DPfail), and D3DRENDERSTATE_STENCILPASS (DPpass) and
D3DRENDERSTATE_STENCILFUNC (comparefunction).
Closely related to this register and assigned at the same time in the driver is the
StencilData messsage of the format shown below:

Field Name Description
Reference Holds the value the stencil data from the local buffer is compared with.
CompareMask Holds the mask which is ANDed with both the stencil data read from the local buffer

and the reference stencil value prior to their comparison is done.
WriteMask Holds the mask used to only allow certain bits in the local buffer stencil field to be

updated.
Again these correspond directly to D3D renderstate: D3DRENDERSTATE_STENCILREF,
D3DRENDERSTATE_STENCILMASK and D3DRENDERSTATE_STENCILWRITEMASK.
Depth buffering is controlled by the DepthMode register, of the format:

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-31

Field Name Description
Enable When set enables the depth test and the replacement of depth value dependent on the

outcome of the test.
WriteMask When set this allows the depth value in the buffer to be updated.
Compare Function Selects the test used to compare the

buffered depth value with the new
iterated source value.

0 = Never
1 = Less
2 = Equals
3 = Less Equals
4 = Greater
5 = Not Equal
6 = Greater Equal
7 = Always

Width This field holds the width in bits of the
depth field in local buffer.

0 = 16 bits wide
1 = 24 bits wide
2 = 32 bits wide
3 = 16 bits wide

Format Format of the Z value in the local buffer. 0 = Integer
1 = Floating Point

Complement When set this causes the set up calculations to be done with 1.0 - Z value at each
vertex rather than Z. This, in conjunction with a floating point Z format allows a non
linear Z buffer to be used.

SamplePoint Determines where the sample point in a
pixel is considered to be.

0 = (at 0.5, 0.5) OpenGL
1 = (at 0.0, 0.0) D3D

MultiSample
Enable

Enables multi-sample processing of the local buffer.

MultiSampleMask Normally has the same number of bits set (starting from bit 0) as there are sub pixels
samples set up in the rasteriser, but setting fewer bits allows use of effects such as
motion blur and depth of field.

UseAllSub Samples When set, this indicates that all the sub pixel buffers are to be written, i.e. one or more
buffers are not going to be skipped to implement motion blur, etc.

Again the fields are set based on the API render state and the required buffer dimensions.
For Direct3D the Enable bit is set if D3DRENDERSTATE_ZENABLE is equal to either
D3DZB_TRUE or D3DZB_USEW. The latter case refers to use of non-linear W-buffer
and if set by the application causes both the Format and Complement fields to be set to 1,
which would otherwise be 0. WriteMask is set based on the status of
D3DRENDERSTATE_ZWRITEENABLE. The last three fields are described in more detail
in the latter section on full scene antialiasing (FSAA).
Finally, it is also necessary to set up the memory base address for the local buffer. This is
performed using the LBBaseAddr register, which simply expects a DWORD (the address
is actually a 28bit value) containing the start base address of the memory allocated for the
local buffer in byte tiles.

Rendering Miranda P10 Programmers Guide

8-32 Proprietary and Confidential 3Dlabs

For example in the DX driver:

 LBBaseAddress = pContext->ZPixelOffset + dwLBByteOffset;
 SEND_P10_DATA(LBBaseAddr, LBBaseAddress);
Where pContext->ZPixelOffset is calculated from the byte position of the allocated local
buffer surface, divided by 64 to give the address in byte tiles. Due to the fact that the
stencil is always the lower significant byte in the local buffer memory words,
dwLBByteOffset is used to offset the address by the byte depth of the stencil buffer (0 or 1
in P10) when the stencil buffer exists but is not enabled.
NOTE: It is necessary to resend a RouterMode command following DepthMode,

StencilMode or StencilData update to avoid a race condition in the local
buffer cache access.

8.7 Framebuffer processing (Dithering, Logical Ops, Blending,
Accumulation buffers/deep buffers)
Frame buffer processing is the domain of the programmable Pixel Unit (PU) and Pixel
Address Unit (PAU). Basic mode configuration for these units and frame buffer
processing are as follows.

8.7.1 Configuring the Frame Buffers
Configuration of the pixel address unit for access to the assigned frame buffer memory is
controlled by the FBMode, FBBuffer and FBBaseAddr registers.
The FBMode register has the following structure:

Field Name Description
SameTileEnable Intended to provide rendering optimization for small primitives.
EntryPoint Holds the 5bit start address in the pixel address unit's program memory to control the

program to run when a tile command is received.

Of importance here is the EntryPoint field which controls the starting point for the
programmable pixel address units instruction sequencer. Usually, only a single PAU
program is stored and this is therefore normally 0.
Up to five separate frame buffers may be configured using the register
FBBuffer0..FBBuffer3 and FBBufferGlobal, where the latter is a special case that
provides a common global memory buffer. Usually just FBBuffer0 and possibly
FBBufferGlobal are used, with FBBuffer1 to FBBuffer3 used for features such as front
and back buffers and left and right stereo. The FBBuffer registers are of the form:

Field Name Description
ReadEnable Enables reads to this frame buffer. Only used for destination addresses, this bit is ORed

with the corresponding bit in the FBBufferReadEnables tag and so can be alternatively
controlled from there.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-33

Field Name Description
AAReadOnly Used together with ReadEnable, if set then frame buffer reads only done when the tile

has aaEnable set. When aaEnable not set then this means that all fragments have 100%
coverage and no destination blending will be done. Note that this is only useful for
depth dependent antialiasing with no alpha transparency.

Width Width in tiles of the buffer. Range 0..2047.
PixelBytePitch The offset between tiles in memory in bytes (normally equal to the tile colour depth).

Range 1..16.
PixelSize Defines the number of bytes read from memory (+1, so 0 equals 1byte) and transferred

to the cache. Normally this is the depth of a tile in bytes, but can be less if a subset of
the field needs to be read and/or written. Range 0..3.

SubFieldStartByte Defines the first byte to transfer from the cache to the Pixel Unit. Normally this is set to
zero, but can be different if a subset of the field needs to be read and/or written.

SubFieldByte
Count

Defines the number of bytes to transfer from the cache (+1) to the Pixel Unit. Normally
this is the same as the PixelSize, but can be less if a subset of the field needs to be read
and/or written.

XMask When set this will cause the x coordinate to be ANDed with the xMask register before
the address is calculated. This can be used for pattern replication. These masks are
loaded as part of the PAU instruction set.

YMask When set this will cause the x coordinate to be ANDed with the xMask register before
the address is calculated. This can be used for pattern replication.

Height Holds the height of the buffer region in tiles. Used only for clipping tile reads outside
the region as can occur when aligning tiles in a source read.

The FBBufferEnables tag is used to define which of the four possible buffers the program
will use. If no buffers are enabled then the frame buffer subsystem is disabled and no
programs in the Pixel Address Unit or in the Pixel Unit will be run.
The FBBufferReadEnables tag defines the read enable status of the possible buffers. Bit
0 corresponds to buffer 0, bit 1 to buffer1, and so on and bit 4 to the global buffer. The
status is ORed with the ReadEnable of the FBBuffer register so either can be used.
The base address for each existing frame buffer is setup with the FBBaseAddr0..3 and
FBBaseAddrGlobal tags. Addresses are given in byte tiles.
An example of frame buffer configuration in the DX driver follows:
 SEND_P10_DATA(FBBufferEnables, 1);
 SEND_P10_DATA(FBMode, FBMode(SameTileEnable, FALSE) |
 FBMode(EntryPoint, 0));
 // Configure destination buffer
 SEND_P10_DATA(FBBuffer0, FBBuffer(ReadEnable, TRUE) |
 FBBuffer(AAReadOnly, FALSE) |
 FBBuffer(Width, DDSurf_Pitch(lpBlt->lpDDDestSurface)/(DestPixelSize<<3)) |
 FBBuffer(PixelBytePitch, DestPixelSize) |
 FBBuffer(PixelSize, DestPixelSize-1) |
 FBBuffer(SubFieldStartByte, 0) |

Rendering Miranda P10 Programmers Guide

8-34 Proprietary and Confidential 3Dlabs

 FBBuffer(SubFieldByteCount, DestPixelSize-1) |
 FBBuffer(MaskX, 0) |
 FBBuffer(MaskY, 0) |
 FBBuffer(Height, 0));

 FBBaseAddress = ((lpBlt->lpDDDestSurface->lpGbl->fpVidMem
 - pThisDisplay->dwScreenFlatAddr)/64);
 SEND_P10_DATA(FBBaseAddr1,FBBaseAddress);

Further examples of using these registers are included in the section on full scene
antialiasing (FSAA).

8.7.2 Loading the Pixel Unit and Pixel Address Unit Programs

The Pixel Address Unit (PAU) controls the memory access operations during frame buffer
processing. PAU programs are loaded two instructions at a time using the FBProg
register. The first 15bit PAU instruction is held in the lower half of the passed DWORD
and the second in the upper half.
A simple example of a PAU program used for alpha blending in the DX driver is:

Program(PAUDestReadWrite, 0x00)
SendDestAddrAndTile(buf0, puReg0, Only);

This causes the destination buffer to be set to the address of FBBuffer0 and spawns a tile
command that is sent to the Pixel Unit indicating that the subprogram indicated by the
Only address (see PixelMode below) should be run.
Constant data can be loaded for use in these programs via the FBAddrInfo registers.
Examples of the use of such constants and more advanced PAU programs are provided
in the later section on full scene antialiasing (FSAA). A description of the full instruction
set is provided in the PAU assembler documentation referenced in P10 Reference Guide
volume 3, section 1.2.4.3, Pixel Address Unit Instruction Set.
The Pixel Unit (PU) programs perform the processing of the colour channel data read from
the frame buffer and received from the shading pipes and the following sections on
blending and dithering provide examples of the practical use of such programs. As for the
PAU, a guide to the full instruction set for the pixel unit is provided in the PU assembler
documentation. Here we introduce the registers required to load these programs and
setup for their correct operation.
The PixelMode register is used to configure the program start addresses and is of the
form:

Field Name Description
TileAddrOnly Holds the 7bit address (128 instruction program space) of the program to run when a

Tile command is received with a progID of 0 and the sameTile bit in the Tile
command is 0.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-35

TileAddrFirst Holds the address of the program to run when a Tile command is received when the
progID is 1.

TileAddrMiddle This field holds the address of the program to run when a Tile command is received
when the progID is 2. It also holds the address of the program to run when the
progID is 0, but the sameTile bit in the Tile command is set.

TileAddrLast TileAddrLast This field holds the address of the program to run when a Tile
command is received when the progID is 3.

These fields allow up to four subprograms to be loaded into the pixel unit instruction
space. The program entry point to be run is determined by the PAU unit program which
controls the operation of this unit. For example the PAU will receive a tile command from
the rasterisation process, which initiates the running of the PAU code. The instructions
SendTile(progID), SendSourceAddrAndTile(buffer, puReg, progID) or
SendDestAddrAndTile(buffer, puReg, progID), in the PAU program then spawn a new tile
comand that is passed to the pixel unit and runs a program there starting from the
appropriate address as indicated by the progID and the PixelMode register.
In the example above the progID was set to Only (interpreted as =0 by the assembler).
For more complicated multi-pass frame buffer processing a First program can be used for
register initialization in the pixel unit, a Middle program used in a loop for intermediate
processing (e.g. accumulation) and a final Last program for result output. Examples of
such programs are included in the following subsections and in the section on full scene
antialiasing.
The sameTile bit is included in the tile command received from the pixel address unit
when sameTileEnable is set in the FBMode register and the same tile is processed
consecutively. Essentially this allows alternative programs to be stored, one that reads
the pixel cache and another, pointed to by the TileAddrMiddle address when sameTile is
set, that uses local working registers assumed to hold the previous processed contents of
the pixel cache. For example:

W[0] = C[0] = Lerp (P[0], F[0], B[15]) Done;
sameTile:
W[0] = C[0] = Lerp (A[0], F[0], B[15]) Done;

To load pixel unit programs to the core the PixelProgramAddr and PixelProgramData
commands are used. The PixelProgramAddr command loads the corresponding register
with the address in the PU instruction space where the subsequent instruction, loaded
with a PixelProgramData register, will be loaded. Instructions are loaded one at a time.
The PixelProgramData register causes the program address to be incremented so only a
single PixelProgramAddr tag need be sent for each set of consecutve instructions
loaded. When loading multiple subprograms such as for the First, Middle and Last multi-
pass approach described previously, a record of the program address should be
maintained and incremented in the driver to allow the correct setting of the PixelMode
register.
Pixel Unit programs can also make use of registers included in the unit for storage of
constants. The unit possesses 32 global byte registers, which can be accessed by any of
the tile SIMD processing elements. For example:
 E = Global[0] W[8] = PassB(E);

Rendering Miranda P10 Programmers Guide

8-36 Proprietary and Confidential 3Dlabs

These are loaded in groups of four using the PixelGlobal register tag. For example …
 SEND_P10_DATA(PixelGlobal0, (Val1 << 8 | Val0));

…will load byte values Val0 and Val1 to global registers 0 and 1 respectively.
As well as such global access registers, each SIMD processing element has a 32bit
fragment data register available to it, accessible in the microcode as four byte registers
using the syntax::
 E = Fragment[1] W[0] = AddS(E, F[0]);
These are loaded 32bits at a time with the UserFragData tag. For example

SEND_P10_DATA(UserFragData8, (Val3 << 24 | Val2 << 16 | Val1 << 8 | Val0));
The following section on dithering provides an example of the use of these registers.
Although programs are usually triggered by the Tile command generated by the rasteriser,
it is possible to initiate program runs manually using the RunPixelProg command. One
application is in the running of a 'start of day' programs that reset or load local registers for
later use. The format of the data sent with this register is as follows:

bits 0…6 Run address
bits 7…14 Run data
bits 15…19 Pass number
bit 30 enableData
bit 31 enableRun

8.7.3 Blending
Perhaps the most important rendering task performed in frame buffer processing is that of
blending the newly rendered pixel fragments with those already in the frame buffer. This
section describes this process from the perspective of the Direct3D API.
The general formula for frame buffer blending is as follows:
 DestNew(RGBA) = (DestOld(RGBA) * DestFactor) OP (Source(RGBA) * SourceFactor)
The formula is split into two product terms and a combining operation, usually an addition.
Here Source is the newly rendered pixel fragment and the DestNew and DestOld values
refer respectively to the value to be written to the frame buffer and the value currently
there. All refer to each of the RGBA colour channels. DestFactor and SourceFactor are
factors used to modulate the source and destination colour channels before they are
combined. A common example used for transparency blending is:
 DestNew(RGB) = (DestOld(RGB) * (1-Source(A))) + (Source(RGB) * Source(A))

See the Direct3D SDK or OpenGL Red Book for other variations.

To support the numerous possible combinations of this formula, the DX driver splits the
program generation into the concatenation of pre-assembled subprograms referring to:
• Destination formatting when required, e.g. 1555 must be converted to the internal

8888 format used in calculations.
• Destination blend factor loading - first colour (RGB) and then alpha (A)
• Destination colour component and blend factor modulation (the left-hand product

term)
• Source blend factor load - first colour (RGB) and then alpha (A)

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-37

• Source colour component and blend factor modulation (the righthand product term)
• Combine source and destination product terms with blend op (e.g. Add)
• Perform dithering if required (see next section)
• Construct output format and write to cache (e.g. internal 8888 to 1555)

These concatenate into a single program and so PixelMode is simply loaded with a zero
and the simple pixel address unit program example, PAUDestReadWrite, introduced
previously is used.
Below is an example of 1555 format (without dithering) applying the transparency blending
formula given above. Each sub-program is indicated.

Destination Formatting
//First the blue component (can use the intrinsic 565 mechanism)
 W[0] = PassA(P[0.L]);
//Then green, the most complicated
E = 64 W[1] = MultL(P[1], E); //Get upper 2 bits of G
E = 64 W[2] = MultU(P[0], E); //Get lower 3 bits of G
 W[2] = Or(A[1], B[2]);s //Combine the two parts
E = 0xF8 W[2] = And(A[2], E); //Lower 3 bits need clearing
E = 8 W[1] = MultU(A[2], E); //Now get upper 3 bits for replication
 W[2] = Or(A[2], B[1]); //and apply
//Now get red
E = 2 W[1] = MultL(P[1], E); //Shift over alpha bit
E = 0xF8 W[1] = And(A[1], E); //Mask out shifted green bits
E = 8 W[4] = MultU(A[1], E); //Now get upper 3 bits for replication
 W[4] = Or(A[1], B[4]); //and apply
//Now alpha
E = 2 W[6] = MultU(P[1], E);
E = 1 W[6] = ~Sub(A[6], E);
//Load the destination factor: 1 - Source Alpha
 W[8] = ~PassB(F[3]);
 W[10] = PassB(B[8]);
 W[12] = PassB(B[8]);
 W[14] = ~PassB(F[3]); // Actually constructed from separate alpha path
//Perform the destination product (upper byte only approximation)
 W[9] = Modulate(A[0], B[8]); // blue
 W[11] = Modulate(A[2], B[10]); // green

 W[13] = Modulate(A[4], B[12]); // red
 W[15] = Modulate(A[6], B[14]); // alpha
Load the destination factor: Source Alpha
 W[0] = PassB(F[3]);
 W[2] = PassB(B[0]);
 W[4] = PassB(B[0]);
 W[6] = PassB(F[3]);
Perform the Source product (upper byte only approximation)
 W[1] = Modulate(A[0] , F[0]);
 W[3] = Modulate(A[2] , F[1]);

Rendering Miranda P10 Programmers Guide

8-38 Proprietary and Confidential 3Dlabs

 W[5] = Modulate(A[4] , F[2]);
 W[7] = Modulate(A[6] , F[3]);
Perform addition of the products (upper byte only approximation)
 W[0] = AddS(A[1], B[9]);
 W[1] = AddS(A[3], B[11]);
 W[2] = AddS(A[5], B[13]);
 W[3] = AddS(A[7], B[15]);
Destination formatting for output
 E = 0x80 W[3] = And(E, B[3]);
 E = 32 W[0] = MultU(A[0], E); //Blue component
 E = 4 W[4] = MultL(A[1], E); //lower 3 bits of green
 E = 0xE0 W[4] = And(A[4], E);
 C[0] = Or(A[0], B[4]);
 E = 4 W[1] = MultU(A[1], E); //Upper 2 bits of green
 E = 128 W[4] = MultU(A[2], E);
 E = 0x7C W[4] = And(A[4], E); //Separate red component
 W[2] = Or(A[1], B[4]);

 //Combine green and blue
 C[1] = Or(A[2], B[3]) Done;

 //and alpha

Note that this lengthy 1555 example has been included to indicate the overall process.
While the program has used the fact that the final required format is a reduced precision
5bit to simplify the processing to the upper byte only in the product and addition
operations (otherwise double byte arithmetic is needed), it is still fairly large. The more
common 565 and 8888 formats do not require the manual format conversion and are
therefore smaller. Also it is possible to treat the transparency blend above as a special
case and utilize the Lerp instruction available in the pixel unit for a more efficient
implementation. For example the 565 special case version of the same operation is:
W[4] = PassB(F[3]);
C[0.L] = Lerp(P[0.L], F[0], A[4]);
C[0.M] = Lerp(P[0.M], F[1], A[4]);
C[1.H] = Lerp(P[1.H], F[2], A[4]) Done;

Other commonly used blend modes can be similarly optimised.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-39

8.7.4 Dithering
Colour formats less than 32bit (e.g. 16 bit 565) can show obvious colour quantisation.
One way to improve this is to perform colour dithering where essentially reduced colour
resolution is replaced by spatial averaging. The colours/intensity of groups of
neighbouring pixels are jittered about the required colour to provide the illusion of a
greater colour depth. This is achieved by the addition of the contents of a dither matrix to
the image pixels with the elements of the matrix corresponding to a particular pixel grid
element. Correct screen/window alignment of this matrix is simplified by the SIMD tile
operation of frame buffer processing in P10, where the 4x4 dither matrix can simply be
aligned to the elements of the tile array.

0 8 2 10
12 4 14 6
3 11 1 9

15 7 13 5
0 8 2 10

12 4 14 6
3 11 1 9

15 7 13 5

0 8 2 10
12 4 14 6
3 11 1 9

15 7 13 5

0 8 2 10
12 4 14 6
3 11 1 9

15 7 13 5

The matrix shown in the above diagram is suitable for a 4bit channel and this is the initial
matrix used in the DirectX driver. For 5 and 6 bits the matrix value must be right shifted
by 1 or 2 bits respectively.
As introduced earlier each pixel unit fragment processor possesses four User Fragment
Data registers that may be loaded for their personal use. These are used here to hold the
dither value of the appropriate aligned matrix element using the UserFragData tag as
follows:

 // Supports 6 bit (UserFragData[0]) and 5 bit (UserFragData[1]) channels.
 for(y=0; y<TILEHEIGHT; y++)
 {
 for(x=0; x<TILEWIDTH; x++)
 {
 dwPackedMatrix = (DWORD)(DitherMatrix[(x % 4) + ((y % 4) * 4)] >> 1);
 dwPackedMatrix = (dwPackedMatrix<<8) + (dwPackedMatrix >>1);
 SEND_P10_DATA_OFFSET(UserFragData0, (x+(y*TILEWIDTH)),

dwPackedMatrix);
 }
 }
Note that the supported colour formats require up to two values to be loaded, e.g. 5 and 6
bits for 565, just 5 bits for 555 or 4 bits for 4444. The matrix values are shifted
appropriately during this one off loading process. The values are then in place for use in
the pixel unit code, only requiring reloading if the fragment registers are required for
another purpose during the rendering process.

Rendering Miranda P10 Programmers Guide

8-40 Proprietary and Confidential 3Dlabs

These registers can be accessed in pixel unit programs by use of the Fragment[]
argument. For example the application of dithering to the 565 alpha transparency blend
program included in the last section would be:
 W[4] = ~PassB(F[3]);
 W[0] = Lerp(P[0.L], F[0], A[4]);
 W[1] = Lerp(P[0.M], F[1], A[4]);
 W[2] = Lerp(P[1.H], F[2], A[4]);
E = Fragment[1] C[0.L] = AddS(E, B[0]); // 5bit
E = Fragment[0] C[0.M] = AddS(E, B[1]); // 6bit
E = Fragment[1] C[1.H] = AddS(E, B[2]) Done; // 5bit

8.7.5 Accumulation Buffers
The accumulation buffer is an OpenGL defined buffer. This buffer consists of four
channels (R, G, B, and A) and cannot be rendered to directly. The accumulation buffer is
controlled exclusively through the following routine (except to clear it):

void glAccum(operation, float value);

The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD. The
accumulation buffer operations apply identically to every affected pixel. Accumulation
buffer values are taken to be signed values in the range [-1; 1].

Operations:
ACCUM - obtains R, G, B, and A components from the buffer currently selected
for reading as a value in [0; 1]. Each result is then multiplied by value. The
results of this multiplication are then added to the corresponding color
component currently in the accumulation buffer, and the resulting color value
replaces the current accumulation buffer color value.
LOAD - has the same effect as ACCUM, but the computed values replace the
corresponding accumulation buffer components rather than being added to them.
RETURN - takes each color value from the accumulation buffer, multiplies each
of the R, G, B, and A components by value, and clamps the results to the range
[0; 1] The resulting color value is placed in the buffers currently enabled for color
writing as if it were a fragment produced from rasterization.
MULT - multiplies each R, G, B, and A in the accumulation buffer by value and
then returns the scaled color components to their corresponding accumulation
buffer.
ADD - same as MULT except that value is added to each of the color
components.

To implement the accumulation buffer it was decided to store the results as a signed 2.14
fixed-point number. Therefore, to store and process the four channels the accumulation
needed to take place over two operations (2 channels per accumulation buffer
component, 4 channels per buffer).

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-41

Tag Requirements
FBBuffer0 Set to the read buffers parameters
FBBuffer2 Set to the accumulation buffer 0 parameters
FBBuffer3 Set to the accumulation buffer 1 parameters
FBBaseAddr0 Set to the read buffer base address.
FBBaseAddr2 Set to accumulation buffer 0 base address.
FBBaseAddr3 Set to accumulation buffer 1 base address.
FBBufferEnables Enable buffer 0 only.
DrawRectangle2D Set up to rasterise the entire window region

Additionally, the pixel address unit was loaded with the following program:
SendSourceAddr (buf0, puReg0); // colour buffer read into reg 0
SendDestAddrAndTile(buf2, puReg1, First); // first two channels from buffer into reg 1
SendDestAddrAndTile(buf3, puReg1, Last); // last two channels from buffer into reg 1

The pixel unit was loaded with the following program. This program has two entry points
as the pixel address program invokes this twice. On the invocation, the “first” program
entry point is called. This entry point, call the accumulation function to process the first
two color channels, then the next two channels saved away in local registers for the next
invocation. On the second invocation, the “last” entry point is called this entry point
processes the final two channels that have previously been stored away.
On each invocation of the program, 2 color channels are processed. Additionally, multi-
byte multiplications and additions are used so as to keep the accuracy of the final
calculations. Here is an example of the program to perform the accumulation operation.
first:
 W[0] = PassA(P[0]);
 W[1] = PassA(P[1]) Call(@Acc); // process the first 2 channels

 W[0] = PassA(P[2]);
 W[1] = PassA(P[3]) Done; // move the data for the next 2 channels

last:
 PassA(A[8]) Call(@Acc); // process the saved data
 PassA(A[8]) Done;

Acc:
 // scale and accumulate first colour component
 // calculate the first two bytes
 E = Global[ACCUM_SCALE_HIGH] W[4] = MultU(A[0], E);

 E = Global[ACCUM_SCALE_HIGH] W[5] = MultL(A[0], E); // upper byte
 E = Global[ACCUM_SCALE_LOW] W[6] = MultU(A[0], E); // upper byte

 // propagate the carry information
 W[5] = Add(A[5],B[6]);

Rendering Miranda P10 Programmers Guide

8-42 Proprietary and Confidential 3Dlabs

 E = 0 W[4] = AddC(A[4], E);

 // scale to normalise fixed point format
 E = 2 W[4] = MultL(A[4], E); // lower byte
 E = 2 W[6] = MultU(A[5], E); // upper byte
 E = 2 W[5] = MultL(A[5], E); // upper byte

 W[4] = Add(A[4], B[6]);

 // calc next byte
 E = Global[ACCUM_SCALE_LOW]
 W[7] = MultL(A[0], E); // upper byte

 // strip off top bits
 E = 2 W[7] = MultU(A[7], E);

 // factor in carry information
 W[5] = Add(A[5],B[7]);
 E = 0 W[4] = AddC(A[4], E);

 // Add into component in Accumulation buffer and write out
 C[0] = Add(P[4], B[5]);
 C[1] = AddC(P[5], B[4]);

 // scale and accumulate second colour component
 E = Global[ACCUM_SCALE_HIGH]
 W[4] = MultU(A[1], E);

 E = Global[ACCUM_SCALE_HIGH]
 W[5] = MultL(A[1], E); // upper byte

 E = Global[ACCUM_SCALE_LOW]
 W[6] = MultU(A[1], E); // upper byte

// propagate the carry information
 W[5] = Add(A[5],B[6]);
 E = 0 W[4] = AddC(A[4], E);

 // scale to normalise fixed point format
 E = 2 W[4] = MultL(A[4], E); // lower byte
 E = 2 W[6] = MultU(A[5], E); // upper byte
 E = 2 W[5] = MultL(A[5], E); // upper byte

 W[4] = Add(A[4], B[6]);

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-43

 // calc next byte
 E = Global[ACCUM_SCALE_LOW]
 W[7] = MultL(A[1], E); // upper byte

 // strip off top bits
 E = 2 W[7] = MultU(A[7], E);

 // factor in carry information
 W[5] = Add(A[5],B[7]);
 E = 0 W[4] = AddC(A[4], E);

 // Add into component in Accumulation buffer and write out
 C[2] = Add(P[6], B[5]);
 C[3] = AddC(P[7], B[4]) Return;

The other accumulation buffer operations rely on similar principles. The multi-byte
mathematics is common for all the operations. For example, the LOAD operation is an
ACCUM operation without the addition to the buffer.

8.8 2D Operations (blits, pattern fills, fonts, pixel depth
conversions, 2D logic ops.)
This section covers in more detail the most common operations required for 2D rendering;
for example, rectangular color fills, rectangular pattern fills, text font rendering, screen to
screen copies, bitmap depth conversion operations, and the various logical operations
expected by GUIs such as X11 and Microsoft Windows.

8.8.1 Simple Solid Color Operations
The simplest 2D rendering operation is a solid color fill. This uses the most basic Pixel
Unit and Pixel Address Unit programs to fill destination tiles with a color specified in the
PixelGlobal0 register. Here is a standard Pixel Address Unit program which will load
destination tiles and send them to the Pixel Unit for processing.
 Program(SimpleDestinationReadProgram, 0)
 SendDestAddrAndTile(buf0, puReg0, Only);
This program takes the destination addresses from the Rasteriser, loads the tiles from
Buffer0 memory if required, and passes them to the Pixel Unit for processing. This
program can be used for almost all 2D rendering operations which use only the screen
and a solid color or color pattern; you simply configure Buffer0, load the appropriate Pixel
Unit program to perform the processing and, if destination tiles must be loaded for a
logical operation, enable destination reads in the FBBufferReadEnables register.
The byte plane tiles will arrive at the Pixel Unit in registers P[0] to P[3], depending on the
pixel depth settings in FBBuffer0; for example, at sixteen bits per pixel P[0] will hold the
low byte of each pixel and P[1] the high byte. If you are rendering 8:8:8 RGB in a thirty-two
bit framebuffer you can configure FBBuffer0 to either load all four tiles (and then ignore
the fourth tile in the Pixel Unit program) or only load the three tiles which store color data.

Rendering Miranda P10 Programmers Guide

8-44 Proprietary and Confidential 3Dlabs

Loading three tiles requires less processing, but loading four uses the framebuffer
memory interface more efficiently; you may need to benchmark both alternatives to
determine the best choice for your application.
Here’s a typical solid fill program at eight bits per pixel:
 Program(SolidFillP8, 0x00)
 E = Global[0] C[0]= PassA(E) Done;

This program loads the low byte of the color from the PixelGlobal0 register and writes it to
every pixel of the destination tile. It can readily be expanded to greater pixel depths by
writing to more cache tiles. For example, a thirty-two bit four-tile version would be:
 Program(SolidFillP32, 0x00)
 E = Global[0] C[0] = PassA(E);
 E = Global[1] C[1] = PassA(E);
 E = Global[2] C[2] = PassA(E);
 E = Global[3] C[3]= PassA(E) Done;

This program reads each byte from the PixelGlobal0 register and writes them sequentially
to the byte planes of the destination.
Pseudo-code to render a solid filled rectangle of size (w, h) pixels at screen coordinates
(x, y):

 LoadPixelAddressProgram (SimpleDestinationReadProgram);
 LoadPixelUnitProgram (SolidFillProgram);
 PixelGlobal0 = ForegroundColor;
 FBBaseAddr0 = TileAddressOfDestination; // Set up Buffer0 in the Pixel Address Unit
 FBBuffer0 = FBBufferForDestination;
 RectanglePosition = (y << 16 | x);
 DrawRectangle2D = (0xE000 | (h << 16 | w));

The simple solid fill program can easily be extended to support logical operations with a
solid color by performing the operation while writing to the destination tile. An example
(dest XOR color) thirty-two bit three-tile program would be:
 Program(SolidFillDPx8, 0x0)
 E = Global[0] C[0] = Xor(P[0], E);
 E = Global[1] C[1] = Xor(P[1], E);
 E = Global[2] C[1] = Xor(P[2], E) Done;

More complicated operations between the destination and a solid color may require
temporary registers to store intermediate results when the operation cannot be
accomplished with one instruction. For example, NOT (dest OR ((NOT color) AND dest) at
sixteen bits per pixel:
 Program (SolidROPBizarre, 0x0)
 E = Global[0] W[0] = And(P[0], ~E);
 E = Global[1] W[1] = And(P[1], ~E);
 C[0] = ~Or(P[0], B[0]);

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-45

 C[1] = ~Or(P[1], B[1]) Done;

This program stores the intermediate results in the Pixel Unit’s W registers, which are
then accessed in the later instructions through their B register alias to complete the
operation and write to the destination. As you can see, relatively complex logical
operations can be implemented in this way by a small program.
Pseudo-code for a logical operation on a rectangle of size (w, h) pixels at screen
coordinates (x, y):
 LoadPixelAddressProgram (SimpleDestinationReadProgram);
 LoadPixelUnitProgram (SolidLogicalOperationProgram);
 PixelGlobal0 = ForegroundColor;
 FBBaseAddr0 = TileAddressOfDestination; // Set up Buffer0 in the Pixel Address Unit
 FBBuffer0 = FBBufferForDestination;
 FBBufferReadEnables |= 1; // Enable reads for Buffer0
 RectanglePosition = (y << 16 | x);
 DrawRectangle2D = (0xE000 | (h << 16 | w));

These pseudo-code examples assume that you reload the programs for every rendering
operation. Since the solid fill routines are so small and very common in many applications,
you will probably find that you get the best performance by keeping them loaded into the
Pixel Address Unit and Pixel Unit at fixed addresses so that you only need to set the
program address in the PixelMode and FBMode registers to enable them rather than
download the program for every solid fill.

8.8.2 Color Pattern Operations
We can render an 8x8 tile-aligned color pattern using the UserFragData registers; the
Pixel Address Unit will continue to use the SimpleDestinationRead program, with different
Pixel Unit programs to perform the pattern fill.
Each of the sixty-four UserFragData registers holds the color value (eight to thirty-two
bits) for one pixel in a tile, and these can be read by the Pixel Unit. UserFragData0 to 7
specify the colors for the first row of pixels in the 8x8 pattern, UserFragData8 to 15 the
second row, and so on.
The UserFragData register for each pixel is accessed through the Pixel Unit Fragment
registers; programs are identical to solid fills, except that we read the color values from
the Fragment registers rather than the Global registers. A Pixel Unit program to perform a
solid fill with a color pattern at 8bpp:
 Program(PatternFillP8, 0x00)
 E = Fragment[0] C[0]= PassA(E) Done;

This program reads the low byte of the Fragment register for each pixel, and writes it to
the tile. As usual, it can easily be expanded to other color depths:
 Program(PatternFillP16, 0x00)
 E = Fragment[0] C[0]= PassA(E);
 E = Fragment[1] C[1]= PassA(E) Done;

Rendering Miranda P10 Programmers Guide

8-46 Proprietary and Confidential 3Dlabs

The pseudo-code for performing a color pattern fill is identical to solid fills, other than
loading the pattern fill program into the Pixel Unit and writing the color pattern to the
UserFragData registers. One slight complication is that the pattern must be written to the
registers as a thirty-two bit dword per pixel regardless of the destination color depth,
whereas on the host it may well be stored as a packed eight or sixteen bit bitmap; in that
case you will need to extract the color of each individual pixel from the pattern bitmap.
With a sixteen bit brush on IA32 processors you can use MMX punpck instructions to
efficiently load four pixels from the brush as one qword and unpack them into four dwords
ready to write to a DMA buffer. At eight bits, or on processors which lack such
instructions, unpacking will be more complicated and implementation is left to the reader;
note, however, that you do not need to zero the unused bits of the color values, as the
Pixel Unit program will never access them.
Logical operations can be implemented as for solid fills. For example, a program to AND
the thirty-two bit destination with the color pattern:
 Program(PatternDPa32, 0x0)
 E = Fragment[0] C[0]= And(P[0], E);
 E = Fragment[1] C[1]= And(P[1], E);
 E = Fragment[2] C[2]= And(P[2], E) Done;

If a 2D logical operation needs to mix a pattern with a transfer from host memory to the
framebuffer (i.e. a download) then the above method won’t work, because the download
needs to use the UserFragData data registers, a way around this is to download the
pattern into the framebuffer and then to perform the download and combine the pattern
with a blt.
To do this you will need a more sophisticated pixel address program:
Program(pixelAddressFBBrushProgram, 0)
 SendDestAddr(buf0, puReg0);
 Add(r0, A0, tileX);
 Add(r1, A1, tileY);
 LoadXY(r0, r1);
 Copy(r3, A3);
 LoadXYMask(A2, r3);
 SendSourceAddrAndTile(buf4, puReg1, Only);

The A0 and A1 registers specify the (x,y) offset into the pattern to begin rendering from
and A2 and A3 contain the XYmask which specifies that the pixel address unit should
wrap back to the start of the pattern when it reaches the end. These parameters can be
passed to the pixel unit program via the FBAddrInfo0 and FBAddrInfo1 registers.
Here is an 8-bit pixel unit program that takes a pattern in the framebuffer and XOR’s it with
the destination in the framebuffer, then OR’s it with the source download data before
writing it back to the destination in framebuffer.
 Program(SDPxo8, 0x0)
 W[12]= PassA(P[4]) ;
 W[4]= Xor(P[0],B[12]) ;
 E=Fragment[0] C[0]= Or(E,B[4]) Done;

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-47

To set-up the pattern we do the following (over and above the normal download code):
 LoadPixelAddressProgram (pixelAddressFBBrushProgram);
 LoadPixelUnitProgram (SDPxo8);

FBAddrInfo0= (xPatOff) | (yPatOff<<16); // Parameter A0 and A1 – (x,y) offset
FBAddrInfo1= (1) | (1<<16); // Parameters A2 and A3 - xyMask
FBBaseAddrGlobal= TileAddressOfPattern; // Set up pattern address in Pix Address Unit
FBBufferGlobal= FBBufferForPattern; // Set up Buffer4 in the Pix Address Unit

The download is then rendered in the normal fashion and the download data is written to
the PixelData register.

8.8.3 Monochrome Pattern Fills
You can fill areas with a monochrome pattern using the AreaStipple registers for
transparent patterns (fill foreground pixels, leaving background pixels untouched) or the
PixelMask register for opaque patterns.
Again, the Pixel Address Unit will run the SimpleDestinationRead program. For
transparent patterns we can use the solid fill Pixel Unit programs, as the AreaStipple
tests will produce a Tile Mask which the Pixel Unit will use to determine which pixels to
update; the solid fill program will attempt to replace all pixels in the tile with the color
specified in PixelGlobal0, but writes to memory are gated by the Tile Mask so that only
the foreground pixels will actually be updated.
For opaque patterns you must create new Pixel Unit programs which render the
foreground or background color based on the Pixel Mask. These programs are very similar
to those used for monochrome bitmap downloads: a suitable program to perform a solid
opaque pattern fill at sixteen bits:
 Program(MonoOpaqueFillP16, 0x0)
> Program(MonoOpaqueFillP16, 0x0)
> E = Global[0] C[0] = PassA(E) Flag=PM;
> E = Global[4] C[0]&= PassA(E);
> E = Global[1] C[1] = PassA(E);
> E = Global[5] C[1]& = PassA(E) Done;

This program takes the foreground color in the PixelGlobal0 register and the background
color in PixelGlobal1. The first instruction fills the first byte plane of the destination tile
with the low byte of the color in PixelGlobal0, and copies the Pixel Mask to the Pixel Unit
Flags register. The second instruction replaces the pixels specified by the Pixel Mask with
the low byte of the color specified in PixelGlobal1. The remaining two instructions perform
the same operation with the second byte of the color and the second byte plane of the tile,
giving a sixteen bit result.
Whichever method you use, you must load a tile-aligned sixty-four bit 8x8 monochrome
pattern into the appropriate registers. If your pattern is stored on the host in tile-aligned
form, then this is simply a matter of reading the sixty-four bit pattern from memory and
writing it to the registers. Otherwise you must rotate the pattern appropriately so that the
top left pixel of the pattern is aligned with the top left pixel of the tiles; implementation is
left to the reader, but if you must rotate often you may wish to cache a copy of the pattern

Rendering Miranda P10 Programmers Guide

8-48 Proprietary and Confidential 3Dlabs

for each of the possible x rotations and only perform rotation in y at runtime. This is a
good compromise between performance and storage as y rotation can be performed
easily by any CPU with a sixty-four bit rotate instruction.
Assuming you have already set up Buffer0 to point to your destination, here is the pseudo-
code for a monochrome pattern fill of size (w, h) pixels at screen coordinates (x, y)
 LoadPixelAddressProgram (SimpleDestinationRead);
 RotatePattern (Pattern64, x, y);
 If (TransparentPattern) {
 PixelGlobal0 = ForegroundColor;
 LoadPixelUnitProgram (SolidFillProgram);
 FBBufferReadEnables |= 1; // Must always enable destination reads here.
 AreaStipple0 = low dword of Pattern64;
 AreaStipple1 = high dword of Pattern64;
 RasterMode |= (AreaStippleEnable | AreaStipple8x8);
 }
 else {
 PixelGlobal0 = ForegroundColor;
 PixelGlobal1 = BackgroundColor;
 LoadPixelUnitProgram (MonoOpaqueFillProgram);
 PixelMask64 = Pattern64;
 // No destination reads required here for solid fill, only for a logical operation.
 }

 RectanglePosition = (y << 16 | x);
 DrawRectangle2D = (0xE000 | (h << 16 | w));

These programs can readily be extended to support logical operations. For transparent
brushes you can use the solid brush logical operation programs, but for opaque brushes
you must expand the monochrome brush into a temporary register and then perform the
logical operation between that register and the destination. An example ((dest XOR NOT
pattern) OR pattern) program at 8bpp:

Program(MonoOpaqueROPPDPnxo8, 0)
 E = Global[0] W[0] = PassA(E) Flag=PM;
 E = Global[4] W[0.1]= PassA(E);
 W[4] = Xor(P[0], ~B[0]);
 C[0] = Or(A[4], B[0]) Done;

This program first expands the monochrome pattern in the pixel mask to an eight bit color
pattern in the W[0] register. It then performs the logical operation between the destination
and the expanded pattern, using the W[4] register to store intermediate results.

8.8.4 Screen To Screen Copies (BitBlt)
Screen to screen (or, more precisely, video memory to video memory) copies require a
new Pixel Address Unit program which can read tiles from two buffers: Buffer0 for the
destination, and BufferGlobal for the source. Here is a typical copy program:

Program(SimpleCopyProgram, 0x0)

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-49

 Add(r0, A0, tileX);
 Add(r1, A1, tileY);
 LoadXY(r0, r1);
 SendSourceAddr(buf4, puReg1);
 LoadXYFromTile();
 SendDestAddrAndTile(buf0, puReg0, Only);

This program requires that you configure the source and destination buffers using the
FBBaseAddr0, FBBaseAddrGlobal, FBBuffer0 and FBBufferGlobal registers, and pass
the relative x and y offset between the two buffers in the FBAddrInfo0 register; using
BufferGlobal for the source allows the same program to support writes to up to four
buffers if required for 3D page-flipping. Note that the destination tile must be sent after the
source tile when the source and destination may overlap.
The first two instructions in the program use the x and y offset values from FBAddrInfo0 to
calculate the x and y coordinates of the source tile from the x and y coordinates of the
destination tile. The next two instructions load those coordinates and then send the
source tile to the Pixel Unit. The final two instructions load the destination tile coordinates
and send that tile to the Pixel Unit.
As with fill programs, the destination tile byte planes will arrive at the Pixel Unit in registers
P[0] to P[3]. The source tile byte planes will arrive in registers P[4] to P[7]. The Pixel Unit
programs must combine the source and destination with any required logical operation
and then write the updated destination out to memory. A program to perform a
straightforward copy at sixteen bits:
Program(Blt16, 0x0)
 C[0] = PassA(P[4]);
 C[1] = PassA(P[5]) Done;

This program simply copies the source tiles to the destination.
Pseudo-code to perform a screen to screen copy of rectangle size (w, h) pixels from
coordinates (xs, ys) to (xd, yd):

LoadPixelAddressProgram(SimpleCopyProgram);
LoadPixelProgram(BltProgram);
FBBaseAddr0 = TileAddressOfDestination;
 // Set up Buffer0 in the Pixel Address Unit
FBBuffer0 = FBBufferForDestination;
FBBaseAddrGlobal = TileAddressOfSource;
FBBufferGlobal = FBBufferForSource;
 // No need to set FBBufferReadEnables for straightforward copy
FBAddrInfo0 = (ys – yd) << 16 | (xs – xd);
 // Pass coordinate deltas to Pixel Address Unit
 // May need to mask out sign bits above if x and y coords are 32-bit.
RectanglePosition = (yd << 16 | xd);
DrawRectangle2D = (0xE000 | (h << 16 | w));

Rendering Miranda P10 Programmers Guide

8-50 Proprietary and Confidential 3Dlabs

This code first sets up the Pixel Unit and Pixel Address Unit programs for the copy. Then it
configures the source and destination buffers, and passes the offset between the source
and destination coordinates to the Pixel Address Unit so that the program can calculate
source tiles from destination tiles. Finally it sets the destination position and performs the
copy.
As usual, the programs can easily be extended to support logical operations. A program to
perform a (src AND dest) operation at sixteen bits:

Program(BltSDa16, 0x0)
 C[0] = And(P[0], P[4]);
 C[1] = And(P[1], P[5]) Done;

To perform such an operation you would load this program into the Pixel Unit and enable
destination reads in the FBBufferReadEnables register.
In some cases you may need to perform logical operations between the source,
destination and a pattern (solid, color or monochrome). Programs to perform such
operations can be written using similar techniques to the pattern fill programs. For
example, a program to perform (src OR (NOT dest AND pattern)) with an 8x8 opaque
monochrome pattern at eight bits:

Program(OpaqueMonoBltSDPano8, 0)
 E = Global[0] W[0] = PassA(E) Flag=PM;
 E = Global[1] W[0.1]= PassA(E);
 W[0] = ~And(P[0], B[0]);
 C[0] = Or(A[0], P[4]) Done;

This program first expands the monochrome pattern specified by the Pixel Mask into the
W[0] register, then performs the logical operation with the source, destination and the
expanded pattern. A program to perform (dest XOR (src OR pattern)) with an 8x8 color
pattern at eight bits:

Program(ColorBltDSPox8, 0)
 E = Fragment[0] W[0] = Or(P[4], E);
 C[0] = Xor(A[0], P[0]) Done;

This program performs the logical operation between the source, destination and the color
pattern specified in the UserFragData registers.
The main exceptions are operations requiring a transparent monochrome pattern. As the
generated Tile Mask gates all writes to the destination you cannot use the AreaStipple
registers for operations which also require a source. Instead you must load the pattern
into the Pixel Mask as for opaque patterns, and then explicitly process the pattern yourself
using the Pixel Mask. A program to perform (pattern AND (src AND dest)) with an 8x8
transparent monochrome pattern at eight bits:

Program(TransparentMonoBltPSDaa8, 0)
 W[0] = And(P[4], P[0]) Flag=PM;
 C[0] = PassA(A[0]);
 E = Global[0] C[0] &= And(A[0], E) Done;

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-51

This program first ANDs the source and destination byte tiles, and copies the pixel mask
to the flags. It stores the result in the W[0] register and copies that to the destination. It
then ANDs the W[0] register with the foreground color specified in the PixelGlobal0
register, using the Pixel Mask to perform the transparent update of the destination.

8.8.5 Text Font Rendering
You can render fonts directly from host memory using the Bitmask register; such
operations are covered in the Bitmask Operations section. For glyphs whose width or
height is greater than 127 pixels you must render from host memory, however, for the best
performance for smaller glyphs you should minimize the amount of data you download by
caching font glyphs in offscreen memory and rendering using the GlyphAddr and
RenderGlyph registers.
Cached font glyphs are stored as monochrome bitmaps in individual bit-planes (zero to
thirty-one) of offscreen memory tiles, and the font cache must always be thirty two bit
planes; the font glyph to render is specified in the GlyphAddr register by the tile address
of the first tile of the glyph and the bitplane number. The initial glyph position is set using
the GlyphPosition register, then the glyph is rendered using the RenderGlyph register,
which specifies the size of the glyph and the offset to the glyph; this allows you to render
multiple glyphs without resetting the GlyphPosition register for each one.
Note that the glyph rendering operations internally utilise the FBBaseAddrGlobal,
FBBufferGlobal, PixelGlobal7 and FBAddrInfo3 registers; if you have cached values in
these registers then you must reload them after the rendering operation.
However, before you can render a glyph from offscreen memory you must first download
it. For best performance you should download successive glyphs from the same font to
each bit plane in turn rather than completely fill one bit plane of your offscreen cache area
before downloading to the next; in most cases this will significantly reduce memory
bandwidth requirements for rendering operations as thirty-two glyphs can be read from
memory simultaneously.
To download the glyph you can use the simple Pixel Adress Unit program, but need a new
Pixel Unit program:

Program(FontDownloadProgram, 0x0)
 E = Global[28] W[0] = And(P[0], ~E) Flag = PM;
 E = Global[28] W[1] = Or(A[0], E);
 C[0] = SelectB(A[0], B[1]) Done;

This program uses the low byte of the PixelGlobal7 register as a mask to determine
which plane to write the font glyph into. The glyph itself is downloaded by writing to the
Bitmask register, and setting the RasterMode to generate a Pixel Mask from the bitmask
data.
Pseudo-code to download a glyph of size (w, h) pixels to bit-plane p at tile address a:

LoadPixelUnitProgram(FontDownloadProgram);
tw = (w + 7) >> 3; // Calculate tile width
FBBuffer0 = (tw << 2) | (1 | (4 << 13) | (1 << 17) | (1 << 21));
FBBaseAddr0 = a + (p >> 3); // Offset start tile to correct plane

Rendering Miranda P10 Programmers Guide

8-52 Proprietary and Confidential 3Dlabs

PixelGlobal7 = (1 << (p & 7)); // And set plane mask for that tile
RasterMode |= GeneratePixelMask; // Generate pixel mask from bitmask data
RectanglePosition = (0 << 16 | 0);
DrawRectangle2D = (0xE000 | SyncOnBitmask | PackedBitmask);
Now write the glyph data to the Bitmask register.
CacheControl = (InvalidatePixel | FlushPixel);

This code sets the PackedBitmask bit in DrawRectangle2D. Unlike other bitmask
operations (e.g. downloading a monochrome bitmap) where any excess data at the end of
a scanline is thrown away, this retains the data for the next scanline, allowing you to
download glyph data which is packed to a byte boundary rather than a dword boundary
and avoiding unpacking the data from bytes into dwords. If your data is already packed to
dword boundaries then you will not need to set the PackedBitmask bit.
Now that the glyph is downloaded, you can render it. This requires another Pixel Address
Unit program:

Program(TextRenderAddressProg, 0x0)
 SendDestAddr(buf0, puReg0);
 Add(r0, A6, tileX);
 Add(r1, A7, tileY);
 LoadXY(r0, r1);
 SendSourceAddrAndTile(buf4, puReg1, Only);

Here’s an example Pixel Unit program to draw transparent text on a sixteen-bit
destination:
Program(DrawTransparentTextProgram16, 0x0)
 E = Global[31] Flag = Bit(P[4], E);
 E = Global[0] C[0]&= PassA(E);
 E = Global[1] C[1]&= PassA(E) Done;

This program can readily be extended to support other color depths. Pseudo-code to
render transparent Text starting at location (x, y) in Buffer0:

LoadPixelAddressProgram(TextRenderAddressProgram);
LoadPixelUnitProgram(DrawTransparentTextProgram);
FBBufferReadEnables |= 1; // Set destination reads.
PixelGlobal0 = TextColor;
GlyphPosition = (y << 16) | x;
advanceX = advanceY = 0;
For each glyph:
 GlyphAddr = (glyphTileAddr << 5) | glyphBitPlane;
 RenderGlyph = glyphWidth | (glyphHeight << 6) | (advanceX << 14) |
 (advanceY << 23);
 Update advanceX and advanceY appropriately;
 if (advanceX > 255 || advanceX < -255 || advanceY > 255 || advanceY < -255)
 GlyphPosition = (y + advanceY) << 16 | (x + advanceX);
 advanceX = advanceY = 0;

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-53

The Pixel Unit program can also be extended to support logical operations by performing
the operation between the text color and destination in a temporary register, and then
merging that into the destination using the pixel mask. For example, to render XOR text at
eight bits:
Program(DrawXORTransparentTextProgram8, 0x0)
 E = Global[31] Flag = Bit(P[4], E);
 E = Global[0] W[0] = Xor(P[0], E);
 C[0]&= PassA(A[0]) Done;

You can also render opaque text by first filling the destination with the background color
and then filling it again with the text color, using the Pixel Mask to ensure that only the text
foreground pixels are updated:
Program(DrawOpaqueTextProgram8, 0x0)
 E = Global[31] Flag = Bit(P[4], E)
 E = Global[4] C[0] = PassA(E)
 E = Global[0] C[0]&= PassA(E) Done;

For logical operations with opaque text you must first render the text to a temporary
register, and then perform the operation between that temporary register and the
destination:
Program(DrawXOROpaqueTextProgram8, 0x0)
 E = Global[31] Flag = Bit(P[4], E);
 E = Global[4] W[0] = PassA(E);
 E = Global[0] W[0.1]= PassA(E);
 C[0] = Xor(P[0], B[0]) Done;

Both of these programs assume the text color is loaded in the PixelGlobal0 register and
the background color in PixelGlobal1.

8.8.6 Bitmap Depth Conversion
You can perform bitmap depth conversion operations by configuring the chip for a copy
operation between two buffers of different depths or color formats, and running an
appropriate Pixel Unit program to perform the color conversion. Here is an example
program for 16->32 bit color conversion, which uses multiply instructions to simulate
bitwise shift operations:

Program(ColorConvert16To32, 0x0)
 E = 8 W[0] = MultL(P[4], E); // W[0] = blue
 E = 1 W[1] = And(P[4], E); // W[1] = bottom bit of blue
 E = 7 W[1] = MultL(A[1], E); // replicate bottom bit into bottom three
 C[0] = Or(A[0], B[1]); // And merge them together
 E = 32 W[0] = MultU(P[4], E); // W[0] = middle three green bits.
 E = 32 W[1] = MultL(P[5], E); // W[1] = top three green bits.
 W[0] = Or(A[0], B[1]); // W[0] = top six bits of green
 E = 32 W[1] = And(P[4], E); // W[1] = bottom bit of green

Rendering Miranda P10 Programmers Guide

8-54 Proprietary and Confidential 3Dlabs

 E = 24 W[1] = MultU(A[1], E); // W[1] = replicate into bottom two bits of
green

 C[1] = Or(A[0], B[1]); // Merge green together
 E = 0xF8 W[0] = And (P[5], E); // W[0] = top five bits of red
 E = 8 W[1] = And(P[5], E); // W[1] = bottom bit of red
 E = 224 W[1] = MultU(A[1], E); // W[1] = replicate into bottom three red bits
 C[2] = Or(A[0], B[1]) Done; // And merge red bits together

Although the program requires many instructions, because each instruction operates on
an entire tile this conversion will still be much faster than performing the conversion using
the host CPU.

8.9 Video Operations and the DXVA Driver
DXVA is Microsoft’s API to enable access to hardware accelerated MPEG decoding.
There are several levels of DXVA acceleration ranging from raw bit-stream
decompression to simple motion compensation. It is recommended that the reader has
some knowledge of the MPEG-2 standard, especially section 7.6 which deals with motion
compensation on which most of this section is based.
This section explains how a DXVA driver can be structured to implement motion
compensation (mocomp) on P10. To a first approximation mocomp on P10 is glorified
multi-texturing and since the details of programming P10 to perform multi-texturing are
described elsewhere in this reference, this section will not give exact details of how the
chip will be programmed. Rather this discussion will be at an intermediate level of
decomposing the commands sent through the DDI (Device Driver Interface) into multi-
texturing operations.

8.9.1 Video scaling (replication and pixel dropping)
Video scaling (either replication or pixel dropping) is implemented as a texturing
operation in P10. However the obvious technique of drawing two textured triangles with
the position and texture coordinates set appropriately will not work when the video
operation is performed via the isochronous channel. There is only a rectangle rasteriser in
the isochronous channel and none of the Vertex Shader or Setup units are available
either. This means that the driver must set up the plane equations for the texturing
operations manually. This manual setup technique is discussed in “Sub-Pixel Sampling &
Interlacing” to which you are referred.

8.9.2 Using the Isochronous channel for video overlays

8.9.3 Probe & Locking
DXVA driver functionality is split into 2 main parts:

• Probe & Locking of the DXVA configuration, and

• The Main Function Loop.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-55

This part of the driver handles configuration queries. It determines if the current probing or
locking configuration is acceptable or not. If it isn’t the function should reject the
configuration and give back the configuration details that it didn’t accept. Futher detail
can be obtained from the Microsoft sample DXVA source.

8.9.4 Main Function Loop

The data in DXVA is passed around in buffers, which are contained in DirectDraw
Surfaces. Once the probing and locking has been completed DXVA sends this data with

 Fig 3.9-1 Driver Algorithm for Buffer Transfer

Begin & End Frames. The DDMOCOMPCALLBACKS documentation states that the
Begin & End functions do not need to be called in pairs, but DXVA overrides that and

Yes

Yes

Yes No

No

No

Copy Frame Info into Array

Process Macroblocks

Dependency
OK?

Wait for incoming buffer.

Frame info?

Discard Buffer

Macroblock
buffer?

Residual
buffer?

Lock buffer position
into Info Array

Lock buffer position
into Info Array

Yes

Rendering Miranda P10 Programmers Guide

8-56 Proprietary and Confidential 3Dlabs

explicitly specifies that Begins & Ends will be paired. As a result, when decompressing
Frame Structured pictures only one Begin & End frame pair is passed, but in Field
Structured pictures there will be 2 pairs, one for the Top and one for the Bottom Field.
Once a Begin Frame has been called the driver follows the functionality shown above.
The flow chart above shows the functionality of the driver when handling DXVA function 1.
This works as follows:
In the Begin Frame call we get a pointer to a surface and an index to go with it. The index
and surface pointer go into an array where we keep the current information about all the
surfaces we have handled so we can form predictions from them. The index is then also
stored to indicate the current frame we are writing to. Then the driver waits for the buffers
to be passed into it via the RenderMoCompFrame callback. This acts as a command
parser which copies the buffer (or its pointer) into the array so we can decode the frame
later. Once all the buffer information required is received the driver automatically begin to
procress the macroblocks and residual data.
Before each frame is processed the dependencies of the frame (reference frames, buffer
information & output location) are checked to make sure that they are valid. Once this
done the ProcessMacroBlock function is called which goes to process all the data. The
flow diagram for the function is shown below:

 Fig 3.9-2: Macro Block Processing Algorithm

The main issue to notice here is that this algorithm does not care about which kind of
frame type we are handling, All the dependencies must be true for us to reach this point
so we only care about each individual macro block. Each block is matched to what kind it
is, the information required to process it is fetched and then the macro block is executed.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-57

If the macro block has no known type MPEG-2 dictates we generate a P-Block from it. It
should be noted that the left hand side of the flow chart is done in the driver while the right
hand side of the flow chart is done by the hardware once it is programmed properly.

8.9.5 Implementation
8.9.5.1 Data formats, Data flow & Programs: Surface formats & General Data flow

Some assumptions have been made to simplify the design and implementation. First of
all, all buffers will be held in system memory apart from the overlay surfaces, these in turn
will be held in YV12 planar format. This format simplifies the motion compensation
processes and reduces the number of errors introduced since the compression side is
done on a planar basis as well. This format also provides the opportunity to implement the
NV12 format, which Microsoft hints to be the preferred format in future specifications.

 Fig 8.9-3 Simplified data flow through P10

From the simplified diagram above it can be seen how all the DXVA buffers are kept in
system memory in order to save time in the processing of the macroblock control
commands. When needed, the residual data is DMAed into a “scratch pad” area of video
memory which has previously been reserved by the driver. When the residual data is read
into the shader (as part of a multi-texture operation) it is converted from signed to
unsigned for the I type blocks. When dealing with reference frames all the data is
converted in the shader from unsigned to signed, processed and then transformed back

Rendering Miranda P10 Programmers Guide

8-58 Proprietary and Confidential 3Dlabs

into unsigned on the output. This is because all the residual data is held in signed format.
Ideally the residual data would all be 16-bit signed integers but since P10 can’t handle
such a data type variable 8-bit residual differences with overflow blocks will be used
instead. It can also be seen from the diagram that the TexCoord unit and the Pixel Unit
are both left doing simple operations.

Because of the planar surface formats and the macro-block structure of the data it is
possible to process the mocomp requests 32-bits at a time instead of at the more obvious
8-bit granularity implied by the surface formats. The net result is that can handle 4 residual
differences at a time instead of only one giving a substantial increase in mocomp “fill-
rate”.

8.9.5.2 Alpha Blending

The DXVA MPEG2_B profile requires that we support alpha blending. The format of the
surface that is used to blend can either be a DPXD surface with Highlight and DCCMD
command blocks, and Index Alpha & Colour surface or an AYUV surface. For simplicity of
the implementation we have decided to use AYUV surface format as this will require less
processing to be done by the chip and the driver. The formula used to alpha blend
determined by Microsoft is as follows:

if(Alpha != 0)
{
Final Channel = ((Alpha + 1) * Source_Channel + (255 – Alpha) * Picture_Channel + 128) >>

8;
}
else
{
Final Channel = Picture_Channel;
}

…where Picture_Channel is the decode image and Source_Channel is the alpha blending
surface.

But also according to Microsoft this is only true for YUV 4:4:4 based formats. If a surface
has some of its channels sub-sampled, as in the 4:2:0 profile used by the MPEG2 profile,
only the second sample shall be used in the sub-sampled channel. This coupled with the
YV12 surface format used in the final overlay surface poses several problems. However
using a multi-pass, multi-sampling approach to alpha blending should solve these.
Using the multi-pass would mean that in the first pass (for Y) the equation would be
unchanged. However when the second and third pass came for U & V P10 would have to
be programmed to pick different pixels, in the same way that multi-sampled AA rendering
does but instead we would drop 3 out of the 4 samples and only alpha blend with the last
one.

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-59

8.9.5.3 Sub-Pixel Sampling & Interlacing

Sub-pixel sampling plays the major role in motion compensation in MPEG-2, simply
because all motion vectors are in half-pixel units. This is accomplished in P10 is by using
the texture filter units to interpolate between 2 pixel values.
The process of interlacing is also done in the Shading unit. This is accomplished by the
use of plane equations which are set up to wrap around on a per-pixel basis. Normally the
plane-equations are set up by upstream units in the chip to ramp up through a range of
values (possibly clamping at the extreme ends of the range). However it is possible to
set up the plane equations directly using the ColorPlaneStart/DXN/DXY tags in such a way
as to cause the output of the plane equation evaluators to oscillate between 0 and 1on a
per scanline basis. The oscillating value is then used to select one of two inputs giving
rise to field interleaving. The globals in the TexCoord program allow the field select (top
or bottom) to be changed cheaply i.e. avoiding a whole program reload when the fields
change.
The following pseudo-code shows the TextureCoord and Shader unit programs that
implement this scheme:

SetTexCoordGlobal(3, 1.0f/float(1 << 3));

SetTexCoordMode(eTexCoordModeEnable);
SetProgramMpeg(eTextureMap0);
 // This will multi texture anyway
SetShaderProgramMPEGInterleave(0, 1);

unsigned32 st = 0;
unsigned32 dx = 0;
unsigned32 dy = 0x200000;
 // Causes plane equations to oscillate in y

SendMessage(ColourPlaneStart0, st);
SendMessage(ColourPlaneDX0, dx);
SendMessage(ColourPlaneDY0, dy);

TexCoord Program

TexCoordInstr("PlaneGlobalBase(0 ,0) FloatToInt(DivResult)");

TexCoordInstr("W[0] = MAdd(One, X, One,Global0[0])");
TexCoordInstr("W[1] = MAdd(One, Global1[0], One,Y)");
TexCoordInstr("W[2] = MAdd(One, Global0[1], One,Y)");

TexCoordInstr("C[0] = Wrap(A[0], Global1[1])");
TexCoordInstr("C[1] = Wrap(A[1], Global1[1])");

TexCoordInstr("Command(FilterTexture, 0,0 , LoadShade,
 NoFB, Default) FloatToInt(DivResult)");

Rendering Miranda P10 Programmers Guide

8-60 Proprietary and Confidential 3Dlabs

TexCoordInstr("C[0] = Wrap(A[0], Global1[1])");
TexCoordInstr("C[1] = Wrap(A[2], Global1[1])");

TexCoordInstr("Command(FilterTexture, 1,1 , LoadShade,
 NoFB, Default) FloatToInt(DivResult)",eTCDone);

Shader program

ShaderInstr("W[Red] = PassA(Plane[0])");
ShaderInstr("Flag = Sub(A[Red], Const[0], ==)");

ShaderInstr("W[Red] = PassA(T[" + STR(tRedB) + "])");
ShaderInstr("W[Green] = PassA(T[" + STR(tGreenB) + "])");
ShaderInstr("W[Blue] = PassA(T[" + STR(tBlueB) + "])");
ShaderInstr("W[Alpha] = PassA(T[" + STR(tAlphaB) + "])");

ShaderInstr("C[Red] = SelectA(T[" + STR(tRedA) + "], B[Red])");
ShaderInstr("C[Green] = SelectA(T[" + STR(tGreenA) + "], B[Green])");
ShaderInstr("C[Blue] = SelectA(T[" + STR(tBlueA) + "], B[Blue])");
ShaderInstr("C[Alpha] = SelectA(T[" + STR(tAlphaA) + "], B[Alpha])",

This will greatly speed up processing since it only takes 2 instructions in the Shader
instead of having to render different lines for different fields in completely separate render
operations.

8.9.5.4 Clipping Macroblocks

Clipped macroblocks occur when a motion vector causes the reference macroblock to
start outside the picture boundary. Detection of this will be done in the driver while
generating the S &T coordinates for the textures. If it is found that the texture coordinates
lie outside the reference picture the macro blocks that need processing will be copied to
the scratch pad and the clipped area filled in with black. This will make sure that there are
no unknown pixel values being generated by the motion compensation.

8.9.5.5 Frame structured Pictures

“I” Frames
This is the most straightforward operation in the whole DXVA driver. Each macro block will
be split up into four 8x8 blocks. Then every block is rendered with 3 texture coordinates:
one Y, one Cb & one Cr. The shader will only pass the pixel values to the pixel unit, where
these will be converted from signed to unsigned. There are no motion vectors and the
driver will ignore concealment vectors.
// Sample DRIVER Pseudo code for I frames

for(every macroblock in the picture)
{
 for(every block inside the macroblock)
 {

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-61

 DMA to scratch pad.
 Program Shader to convert from 8-bit signed
 to 8-bit unsigned.
 Calculate the blocks position in the final YV12
 Surface.
 Blit 8x8 8-bit block from scratch pad to Overlay
 Surface
 }
}

“P” Frame structured blocks
P-Frame blocks are the simplest form of motion compensation. A reference block offset by
a motion vector is fetched, the residual differences are added and then the block is written
to the output picture. The basic processing flow is as follows:

The reference block is generated from the motion vectors. These are used to calculate
texture coordinates in the reference frame. These are then used to do a multi texture blit
operation in which the shader will be used to add or subtract the residual difference. This
will be done for every block that has a residual difference present in the macro block
control command. If a block has no residual difference a simple blit operation will be used
to copy the block from the reference picture to the output picture. The proposed driver
pseudo code is as follows:

// Sample DRIVER Pseudo code for P frames
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 6; i++)
 {

Residual
Difference

Reference
Block

Output
Block +

Rendering Miranda P10 Programmers Guide

8-62 Proprietary and Confidential 3Dlabs

 Calculate Reference block Tex Coords.
 if(HaveResdiffBlocks[i])
 {
 Change shader to add resdiff program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to blit program
 Change TCU to single textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-63

“B” Frame structured blocks
B frame blocks are a step forward from P frame blocks. The processing is virtually the
same apart from the fact that the reference block is composed by averaging 2 reference
blocks, one in the forward reference frame and one in the backwards frame. The
processing flow is as follows:

The reference blocks are generated from the motion vectors. These are used to calculate
2 sets of texture coordinates in the reference frames. These are then used to do a multi
texture blit operation in which the shader will be used to average the incoming pixels and
then add or subtract the residual difference. This will be done for every block that has a
residual difference present in the macro block control command. If a block has no residual
difference a simple blit operation will be used to copy the block from the reference picture
to the output picture, but the averaging will still be done. The proposed driver pseudo
code is as follows:

// Sample DRIVER Pseudo code for B frames
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 6; i++)
 {
 Calculate Forward Reference block TexCoord location
 Calculate Backward Reference block TexCoord location
 if(HaveResdiffBlocks[i])

Rendering Miranda P10 Programmers Guide

8-64 Proprietary and Confidential 3Dlabs

 {
 Change shader to average and add resdiff program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to average blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

“P” Field structured blocks
This is a more complicated form of motion compensation but still relatively straight
forward. As with P frame block the residual difference is added to reference block. But in
this case the reference block is formed by interlacing 2 fields. The fields change on a line
by line basis and can be formed from any field in the macro block pointed to by the motion
vector, i.e. the top field of the reference block can be formed from the top field pointed by
motion vector 1 while the bottom field can also be generated by the top field pointed to by
motion vector 2. The process flow of the block is as follows:

The reference blocks are generated from the motion vectors. These are used to calculate
2 sets of texture coordinates in the reference frames. These are then used to do a multi
texture blit operation in which the shader will be used to interlace the incoming pixels and
then add or subtract the residual difference. This will be done for every block that has a
residual difference present in the macro block control command. If a block has no residual
difference a simple blit operation will be used to copy the block from the reference picture
to the output picture, but the interlacing will still be done. The proposed driver pseudo
code is as follows:

Residual
Difference

Forward
Top Field

Output
Block +

Forward
Bottom
Field

~

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-65

// Sample DRIVER Pseudo code for P field blocks
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 6; i++)
 {
 Calculate Top Field Reference block TexCoord location
 Calculate Bottom Field Reference block TexCoord location
 if(HaveResdiffBlocks[i])
 {
 Change shader to interlace and add resdiff program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to interlace blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-66 Proprietary and Confidential 3Dlabs

“B” Field structured blocks
This is the equivalent of the B frame blocks in field format. Instead of having 2 motion
vectors this type has 4 motion vectors and 4 field selection bits. Apart from the interlacing
the processing for the type of block is the same as the B frame block. The flow for this
block is as follows:

The reference blocks are generated from the 4 motion vectors. These are used to
generate 4 texture coordinates that will be used to generate the 2 reference frames.
These are then used to do a multi texture blit operation in which the shader will be used to
interlace & average the incoming pixels, then add or subtract the residual difference. This
will be done for every block that has a residual difference present in the macro block
control command. If a block has no residual difference a simple blit operation will be used
to copy the block from the reference picture to the output picture, but the interlacing &
averaging will still be done. The proposed driver pseudo code is as follows:

// Sample DRIVER Pseudo code for P field blocks
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }

Residual
Difference

Output
Block +

Forward
Top Field

Forward
Bottom

Field

~

Backwards
Top Field

Backwards
Bottom

Field

~

//

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-67

 for(i = 0; i < 6; i++)
 {
 Calculate Forward Top Field Reference block
 TexCoord location
 Calculate Forward Bottom Field Reference block
 TexCoord location
 Calculate Backwards Top Field Reference block
 TexCoord location
 Calculate Backwards Bottom Field Reference block
 TexCoord location
 if(HaveResdiffBlocks[i])
 {
 Change shader to interlace, average and add
 resdiff program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to interlace, average blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-68 Proprietary and Confidential 3Dlabs

Dual Prime blocks
Dual-prime blocks are relatively simple. The MPEG-2 spec goes into great detail about
what dual-prime blocks are, but it over complicates the matter. Dual primed blocks are
composed of a normal Forward predict block which is averaged with another reference
block. This other reference block is generated as follows: the TOP field of the block is
generated from the BOTTOM field of block while the BOTTOM field is generated from the
TOP field from another block. This field selection order never changes, the processing
flow for this block is as follows:

DXVA passes 4 motion vectors into the macro block control command, only 3 are used
because one of them is a duplicate. These are used to generate 3 texture coordinates that
will be used to generate the 1 normal reference block and 1 interlaced reference block.
These are then used to do a multi texture blit operation in which the shader will be used to
interlace & average the incoming pixels, then add or subtract the residual difference. This
will be done for every block that has a residual difference present in the macro block
control command. If a block has no residual difference a simple blit operation will be used
to copy the block from the reference picture to the output picture, but the interlacing &
averaging will still be done. The proposed driver pseudo code is as follows:

// Sample DRIVER Pseudo code for P field blocks
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.

Residual
Difference

Output
Block +

Forward
Same
Parity

Forward
Top Field
Opposite

Forward
Bottom

Field Opp.

~

//

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-69

 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 6; i++)
 {
 Calculate Forward Same parity Reference block
 TexCoord location
 Calculate Opposite Top Field Reference block
 TexCoord location
 Calculate Opposite Bottom Field Reference block
 TexCoord location
 if(HaveResdiffBlocks[i])
 {
 Change shader to dual primed program.
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to no res-diff dual primed program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-70 Proprietary and Confidential 3Dlabs

“I” Frames
Same as Frame-structured pictures above.

“P” Field structured blocks
P Field blocks are done in the same way as the P-Frame blocks in the Frame structured
pictures. But instead of doing the whole 16 lines only 8 interlace lines are done according
to which field we are processing. The flow for a block is as follows:

The reference field is read as though a P Frame Field mocomp is being done. Then the
shader plane equations are set to select which field we are going to motion compensate.
The pixel unit is also set up so that only the lines for the field where the result is going are
written to the frame buffer. All the generation of the texture coordinates and addition of the
residual difference is done as if a P-Frame block is being processed. The proposed driver
pseudo code is as follows:

// Sample DRIVER Pseudo code for P frames
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 4; i++)
 {
 Calculate Reference block Tex Coords.
 Load field selection
 Load Destination Field

Residual
Difference

Reference
Field

Output
Block +

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-71

 if(HaveResdiffBlocks[i])
 {
 Change shader to add field-resdiff program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to blit program
 Change TCU to single textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-72 Proprietary and Confidential 3Dlabs

“B” Field structured blocks
Again the processing of this type of block is similar to its Frame Structure counterpart.
Both the forward and backwards reference fields have their own field selection bit. Again
only 8 lines are being processed instead of 16. The processing flow is as follows:

The processing for this type of block is done basically in the same way as its Frame
structure counterpart. The Shading unit plane equations are being used to do all the
processing or interleaving the incoming blocks. The proposed driver pseudo code is as
follows:

// Sample DRIVER Pseudo code for B frames
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 4; i++)
 {
 Calculate Forward Reference block TexCoord location
 Calculate Backward Reference block TexCoord location
 Load Forward field selection
 Load Backwards field selection
 Load Destination Field

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-73

 if(HaveResdiffBlocks[i])
 {
 Change shader to field average and add resdiff
 program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to field average blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-74 Proprietary and Confidential 3Dlabs

“P” 16x8 MC structured blocks
This kind of motion compensation is unique to field structure pictures. In this type the
macroblock is split up into 2 16x8 sections. However the processing of those sections are
the same as the P Field block. The flow for this macro block is as follows:

Following the P field block processing, the macro block’s texture coordinates are
generated from the incoming motion vectors. The shader equations are then set up to
select which field the lines are coming for both incoming fields. The plane equations are
also used to switch between the top 16x8 section and the lower 16x8 sections. The
proposed driver pseudo code is as follows:

// Sample DRIVER Pseudo code for P field blocks
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 4; i++)
 {
 Calculate Top Field Reference block TexCoord location
 Calculate Bottom Field Reference block TexCoord location
 Load Top field selection
 Load Bottom field selection
 Load Destination Field
 if(HaveResdiffBlocks[i])
 {
 Change shader to 16x8 and add resdiff program

Residual
Difference

Forward
Top Field

Output
Block +

Forward
Bottom

Field

~

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-75

 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to 16x8 blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-76 Proprietary and Confidential 3Dlabs

“B” 16x8 MC structured blocks
Again the flow of this type of macro block follows the same pattern as its B-Field counter
part. But instead of only having 2 fields to process we have 4 because of the 16x8
formatting. The flow for this block is as follows:

The generation of the block is done as normal and the shader plane equations again
relied upon to select the fields from the incoming blocks. The proposed driver pseudo
code is as follows:

// Sample DRIVER Pseudo code for P field blocks
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 4; i++)
 {
 Calculate Forward Top Field Reference block
 TexCoord location
 Calculate Forward Bottom Field Reference block
 TexCoord location

Residual
Difference

Output
Block +

Forward
Top Field

Forward
Bottom

Field

~

Backwards
Top Field

Backwards
Bottom

Field

~

//

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-77

 Calculate Backwards Top Field Reference block
 TexCoord location
 Calculate Backwards Bottom Field Reference block
 TexCoord location
 Load Forwards Top field selection
 Load Forwards Bottom field selection
 Load Backwards Top field selection
 Load Backwards Bottom field selection
 Load Destination Field
 if(HaveResdiffBlocks[i])
 {
 Change shader to interlace, average and add
 resdiff program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location
 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to interlace, average blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

Rendering Miranda P10 Programmers Guide

8-78 Proprietary and Confidential 3Dlabs

Dual Prime blocks
This is a simplified case of the Frame Structure dual primed block. But instead of the 4
fields to interpolate we only have 2 because of the field nature of this picture. The flow of
the block is as follows:

This is in fact a hard wired B-field block, with both forward and backwards textures
pointing to the same picture and the field signs hard wired to point to opposite fields.
Therefore the proposed driver pseudo code is as follows:

// Sample DRIVER Pseudo code for B frames
bool HaveResdiffBlocks[6]
dword offset_into_resdiff

for(every macroblock in the picture)
{
 offset_into_resdiff = 0
 Read pattern code and fill in HaveResdiffBlocks accordingly.
 if(have any resdiff blocks)
 {
 Copy ResDiff blocks to Scratch pad.
 Program Texture B to point at resdiff blocks
 }
 for(i = 0; i < 4; i++)
 {
 Calculate Forward Reference block TexCoord location
 Calculate Backward Reference block TexCoord location
 Load Forward field selection
 Load Backwards field selection
 Load Destination Field
 if(HaveResdiffBlocks[i])
 {
 Change shader to field average and add resdiff
 program
 Change TCU to multi textured blit program
 Calculate Residual Difference TexCoord location

Residual
Difference

Output
Block +

Forward
Same
Parity

Forward
Opposite

Field

//

Miranda P10 Programmers Guide Rendering

3Dlabs Proprietary and Confidential 8-79

 from offset_into_resdiff
 Blit 8x8 8-bit block
 offset_into_resdiff++
 }
 else
 {
 Change shader to field average blit program
 Change TCU to multi textured blit program
 Blit 8x8 8-bit block
 }
 }
}

8.9.6 Summary
The main features of this implementation are:
• Up to 6 Textures will be used (if 8-bit overflow is done);
• Textures are reprogrammed in a block by block basis;
• Main processing is done by the Shading unit;
• All processing is done in signed arithmetic. The Shading unit is used to Convert from

Unsigned to signed and the Pixel unit to do the reverse;
• Pixel sampling rules are changed to sample in the centre of the pixel;
• Residual difference blocks are programmed as 2D textures but the TexCoord is

recalculated in the TexCoord Unit. This saves the time taken to re-format the residual
difference;

• Macro Block control buffers should be stored in the system memory otherwise the
command processing will be slowed down significantly.

Miranda P10 Programmers Guide Antialiasing

3Dlabs Proprietary and Confidential 9-1

9
9 Antialiasing

9.1 Sample point position (how many sample points)
P10 architecture supports edge anti-aliasing by performing rasterisation of the object
several times and accumulating the results. Each time the object is rasterised the
sampling point position is slightly offset.
P10 allows for a maximum of 16 sample point positions to be downloaded and used.
Sample point positions on the P10 are pairs of 4 bit numbers and are downloaded using
either the AALineSamples or the AATriangleSamples Tag. One sample position is
contained per byte of tag data. These 4 bit numbers represent the sub-pixel position of
the sampling point relative to the top-left corner of a given pixel.
The sample point positions are always downloaded as positive numbers so there must be
an internal adjustment to correctly position the AA sample points around the conceptual
center of the pixel. This correction is necessary to handle both the OpenGL and the
DirectX pixel sampling rules.
The following is an example of a 16-element spatial arrangement (the center point of the
pixel is assumed to be at (0.5, 0.5)).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Antialiasing Miranda P10 Programmers Guide

9-2 Proprietary and Confidential 3Dlabs

These values are required to recreate the same sample pattern on the P10:

X 6 10 14 2 6 14 10 6 10 2 2 6 14 14 2 10
Y 7 1 3 1 11 7 9 15 5 9 13 3 15 11 5 13

Additionally to downloading the sample pattern, the Rasteriser Unit needs to be informed
of the numbers of samples to perform per rendering operation. This is achieved by setting
the AATriangleSamplePoints and the AALineSamplePoints fields in the RasterMode tag.
The number placed in these fields should be (the number of samples – 1);

Tag Requirements
RasterMode Set up the correct values of the AA triangle sample points and the aa line

sample points (should be set to number of samples – 1).
AATriangle Samples Used to download up to 16 triangle sample positions.
AALineSamples Used to download up to 16 line sample positions.

Once the rasteriser has been configured any objects rendered will not only generate a tile
mask but also a coverage value will be generated. This coverage value represents the
number of sampling iterations in the rasteriser unit considered the pixel to be associated
the object. According to the OpenGL specifications this coverage value replaces the
pixels associated alpha value and is used to perform subsequent blend operations.
This is an example of a 4-sample pixel unit program pre-amble to generate the OpenGL
coverage values.

 PassA(A[0]) JumpFalse (AA,@finish);
 E = 4 W[13] = PassA(E);
 E = 64 W[14] = PassA(E); // Load W[14] with scale factor

 // W[3] = scaled coverage - the scale factor has been loaded into W[14]
 E = Coverage W[3] = MultL(A[14], E);

 // Compare coverage value with num samples - this has been loaded into W[13]
 E = Coverage Flag = Sub(E, B[13], ==);

 // If coverage == num samples, W[3] = 255
 E = 255 W[3] = SelectA(E, B[3]);

 // W[3] = scaled coverage * alpha
 W[3] = Modulate(A[3], F[3]);

finish:
 // standard processing begins here W[3] holds the alpha/coverage value

Miranda P10 Programmers Guide Antialiasing

3Dlabs Proprietary and Confidential 9-3

The program shown makes use of a programming optimization to skip the alpha value
calculations if the tile is totally within the object.
Also, the program has to perform a check to see if the coverage value received is equal to
the current number of sample points. This check has to be performed to clamp the
maximum coverage value within the 0-255 range of the pixel unit.

9.2 OpenGL Antialiasing (triangles, dual line patterns, points)
The OpenGL specifications allow for specific control over the performing anti-aliasing on
each of the main render primitives. To enable anti-aliased rasterisation of a specific type
of primitive the corresponding bit in the Primitive Setup Unit needs to be set.
(AAPointEnable, AALineEnable and AATriangleEnable bits in PrimSetUpMode
command). Enabling a bit field in this register does two things:
1. The geometry of the primitive is changed to the smooth version.
2. If the primitive type has anti-aliasing enabled then the rasteriser is forwarded a

register to enable coverage value generation.

The primitive setup mode register has the following fields to control anti-aliased primitives:

Field Requirements
AAPointEnable Enable the generation of smooth points.
AALineEnable Enable the generation of smooth lines.
AATriangleEnable Enable the generation of smooth triangles.

This control is necessary as there are various OpenGL geometry rules for primitives that
are dependent upon whether the primitives are being anti-aliased (smoothed) or not.
Aliased points are rendered as squares where as smooth points are round. Aliased lines
have ends which are perpendicular to the major axis of the line, anti-aliased lines have
ends perpendicular to the direction of the line.
Additionally, the P10 architecture allows for a anti-aliased line optimization to be
performed. The benefit of running the chip in this mode of operation is that smaller
numbers of sample points can be used. Generally, when anti-aliasing the sample points
are chosen so that no matter what orientation the object being drawn is to the sample
pattern the coverage values will produce a smooth edge value.
However, by using the line orientation to select the sample pattern allows a less
generalized, more specialized sample pattern to be downloaded. This dual sample
method generates smooth lines using only four samples that are almost comparable to a
16-sample general sample pattern.
To enable this the DualAALineSamplePatterns bit in the RasterMode command needs to
be enabled. When this bit is set it will cause the AA sample pattern for lines to depend
upon the orientation of the line being draw (i.e. x major or y major). If the orientation is x
major then the AA sample points will be taken from the lower half of the AA line sample
point table, otherwise for y major lines they are taken from the upper half of the table.

Antialiasing Miranda P10 Programmers Guide

9-4 Proprietary and Confidential 3Dlabs

Field Requirements
DualAALineSample Patterns Enable using dual sample patterns for lines.

Obviously, as the sample table is divided in two in this mode, the maximum number of
samples in each set is 8 when in this mode.

9.3 Full Scene AA (FSAA, Multi sampling, Super sampling)
This section describes an example of programming P10 to perform multi-sample full
scene antialiasing (FSAA) as required by the DX7 API in response to a request for
D3DANTIALIAS_SORTINDEPENDENT, or for a multisample surface in DX8. Note that for
DX7 the number of samples required N (the quality of the antialiasing) is set by the driver,
usually from a selection made by the end user via a control panel interface, while it DX8 it
is a attribute of the surface.
Multi-sample antialiased rendering can be broken down into the following process:
• Allocation of multiple frame buffers and, if required, local buffers, one for each sample

position to be recorded.
• Rendering of the scene as normal. The difference however, is that although shading

is performed just once for each pixel, visibility is determined in the rasteriser for
multiple jittered sample positions within each pixel. Communicated via coverage
masks broadcast to the other relevant units in the P10 core, the visibility status of
each sample is used to update the relevant sub-frame and -local buffer. In the case
of the local buffer, separate depth values are interpolated for each sample position to
permit correct handling of intersecting edges.

• Multiple copies of the same scene now exist in each of the sub buffers, each sampled
from a slightly different position. At the end of rendering the frame, prior to blitting or
flipping to the front buffer for display, these images are blended together in a
combining blit, to the back buffer surface. Any dithering, if required, is applied at this
stage.

The individual steps are now described in more detail. When the requirement for FSAA is
determined from the render state, video memory is allocated for N additional frame
buffers. These frame buffers are created in addition to the back buffer render surface so
that they are independent of any blit operation or flip chain.
The render target base address is then switched from the back buffer surface to the start
of this newly allocated video memory. Similarly, additional local buffer memory is also
allocated. The setup of the FBBuffer, FBBaseAddr, LBBuffer and LBBaseAddr
registers to the core are then as described in the sections on Local- and Framebuffer
Processing above.
Control of the addressing of the extended multi-buffer memory is handled differently in
P10 for the frame buffers and local buffers. The addressing of the frame buffer memory is
controlled by a pixel address unit (PAU) program downloaded from the driver. Because of
this the multiple frame buffers are created as a single block, equal to N times the size of
that of the back buffer after it has been resized for tile alignment.

 // Calculate the tile aligned dimensions of the back buffer surface
 dimX = DDSurf_Width(pSurfRender);

Miranda P10 Programmers Guide Antialiasing

3Dlabs Proprietary and Confidential 9-5

 dimX = ((dimX + TILEWIDTH) &~ TILEWIDTH);
 dimY = DDSurf_Height(pSurfRender);
 dimY = ((dimY + TILEHEIGHT) &~ TILEHEIGHT);

 // Determine the memory allocation requirement for the antialias buffer
 mmrq.dwBytes = (dimX * dimY * pixelSize * DXGlobals.dwAASampleCount);

The sub-buffers corresponding to each sample position are considered to be positioned
consecutively in the memory block with the offset to each performed by the destination
address setup in the PAU program. Reset the PAU program address:
 SEND_P10_DATA(PixelProgramAddr, 0);
The PAU for three samples or more is as follows:

Program(PAUaaBufferRenderGTE3, 0x00)
Add(r0, A0, tileX);
Add(r1, A0, tileY);

// Load the required number of samples - 2
Copy(r2, a2);

// First subpixel buffer
SetTileMaskFromCoverage();
SendDestAddrAndTile(buf0, puReg0, First);

loop2:

// Sucessive subpixel buffer
Add(r1, A1, r1); // Increment tileY
LoadXY(r0, r1);
SetTileMaskFromCoverage();
SendDestAddrAndTile(buf0, puReg0, Middle);

Dec(r2, r2);
JumpNotZero(r2, loop2);

// Last subpixel buffer
Add(r1, A1, r1); // Increment tileY
LoadXY(r0, r1);
SetTileMaskFromCoverage();
SendDestAddrAndTile(buf0, puReg0, Last);

The arguments A0 and A1 seen in the above program are loaded as constants with the
register FBAddrInfo as shown below.
 SEND_P10_DATA(FBAddrInfo0, (dimY << 16) | 0);

In contrast, the addressing to each sub-region of the antialiasing local buffer is performed
automatically in hardware in the local buffer address unit. This assumes that the multiple

Antialiasing Miranda P10 Programmers Guide

9-6 Proprietary and Confidential 3Dlabs

buffers are consecutive in memory, with the added proviso that the buffers are of a size
such that the provided offset is a multiple of 1024bytes and the memory allocated
supports a stride of 24 byte tiles. The offset is setup as part of the LBMode register.
The programming required for this setup is provided below.

 // Calculate the tile aligned dimensions of the render targets local buffer
 dimX = DDSurf_Width(pZBuffer);
 dimX = ((dimX + TILEWIDTH) & ~TILEWIDTH);
 dimY = DDSurf_Height(pZBuffer);
 dimY = ((dimY + TILEHEIGHT) & ~TILEHEIGHT);

 // Determine the preliminary memory allocation requirement
 mmrq.dwBytes = (dimX * dimY * ZpixelSize);

 // Setup the offset between buffers in units of 1024 byte tiles
 mmrq.dwBytes /=TILEAREA; // Tile byte size of single buffer
 mmrq.dwBytes += 1023;
 mmrq.dwBytes &= ~1023; // To units of 1024

 // Set up LBMode bits for Multisample Antialiasing
 P10LBMode.bits.OffsetBetweenBuffers = mmrq.dwBytes >> 10;

 // Local buffer has hardwired stride of 24byte tiles. Add 24 to ensure no data missed.
 mmrq.dwBytes += 24;

 // Total allocation memory requirement is then
 mmrq.dwBytes *= (TILEAREA * dwMultisampleCount);

In addition to the LBMode, other render state that must be setup correctly in the P10 core
include the RasterMode, PrimSetupMode, DepthMode and AATriangleSample
registers.
The RasterMode must be setup with the desired number of samples and whether or not
the coverage information shall be used as a mask or a count.
 P10RasterMode.bits.AATriangleSamplePoints = DXGlobals.dwAASampleCount - 1;
 P10RasterMode.bits.AAType = 0; // Mask form of coverage AA

The PrimSetupMode informs the primitive setup engine that antialiased triangles shall be
rendered.
 P10PrimSetupMode.bits.AATriangleEnable = 1;

The positions of the jittered sample points are loaded via the AATriangleSamples
register, setup in the driver according to the required number of samples. This is further
described in Section 9.1.
The DepthMode register also includes fields specific to multi-sample operation.

Miranda P10 Programmers Guide Antialiasing

3Dlabs Proprietary and Confidential 9-7

 // Set up DepthMode bits for Multisample Antialiasing
 P10DepthMode.bits.MultiSampleEnable = 1;

 for (mask = 0; mask < DXGlobals.dwAASampleCount; mask++)
 P10DepthMode.bits.MultiSampleMask |= (1 << mask);

The above shows the settings for antialiasing, but for multi-sample rendering effects other
than antialiasing, such as motion blur, the mask will not always include all the samples.
For this reason the UseAllSubSamples field is included to inform the P10 core that all
subsamples are used and optimisations can be used.
 P10DepthMode.bits.UseAllSubSamples = 1;

The pixel unit programs for the rendering phase are unchanged from those described in
Section 8.7, Framebuffer Processing with the exception that the issue of dithering must be
postponed until after the sub-buffer image combine blend and not performed for each
individual rendered sub-buffer image. Therefore, the alpha blending pixel unit program
load is independent of whether or not antialiasing is used. The First, Middle and Last
program calls in each of the SendDestAddrAndTile instructions in PAU program
PAUaaBufferRenderGTE3 above refer to the same program address, 0, and are there for
the correct operation of the pixel address unit, not to influence the pixel unit operation.
 SEND_P10_DATA(PixelMode, 0);

Finally, a set of additional pixel unit and pixel address unit programs is required for the
combining blit operation.
The source and destination base address setup for the blit from the enlarged antialiasing
buffer to the actual back buffer are performed using two P10 frame buffers, setting up
both FBBuffer0, FBBaseAddr0 and FBBuffer1, FBBaseAddr1 pairs as described in
Section 8.7.
The PAU program used to process the blit is similar to that used during the rendering
phase. The versions for greater than or equal to three samples is given below (for two
samples no loop is needed):

Program(PAUaaBufferCombineGTE3, 0x00)
Add(r0, A3, tileX);
Add(r1, A3, tileY);

// Load the required number of samples - 1
Copy(r2, a2);

// First subpixel buffer
SendSourceAddrAndTile(buf1, puReg1, First);

loop2:

// Second subpixel buffer
Add(r1, A1, r1); // Increment tileY
LoadXY(r0, r1);

Antialiasing Miranda P10 Programmers Guide

9-8 Proprietary and Confidential 3Dlabs

SendSourceAddrAndTile(buf1, puReg1, Middle);

Dec(r2, r2);
JumpNotZero(r2, loop2);

// Set up the addresses for the display target write.
LoadXYFromTile();
SendDestAddrAndTile(buf0, puReg0, Last);

As before, the constants A0, A1,A2 and A3 used here are loaded as:
 SEND_P10_DATA(FBAddrInfo0, (dimY << 16) | 0);
 SEND_P10_DATA(FBAddrInfo1, 0 | (DXGlobals.dwAASampleCount-1));

As shown in the PAU program’s SendDestAddrAndTile calls above, the pixel unit
programs are split into two or more passes depending on the number of samples required.
The first pass program for the first sample simply loads the colour data to local
accumulation registers, while the middle program is used for accumulation of the
subsequent samples. Finally, the last program scales the result and extracts the required
colour. The examples shown are for a 565 16-bit colour format, without dithering.
Alternate programs for other supported pixel formats are also required.

 Program(PUaaBufCombineFirst565, 0x00)
 W[0] = PassA(P[4.L]);
 E = 0 W[1] = PassA(E);
 W[2] = PassA(P[4.M]);
 E = 0 W[3] = PassA(E);
 W[4] = PassA(P[5.H]);
 E = 0 W[5] = PassA(E) Done;

 Program(PUaaBufCombineMiddle565, 0x00)
 W[0] = Add(P[4.L], B[0]);
 E = 0 W[1] = AddC(E, B[1]);
 W[2] = Add(P[4.M], B[2]);
 E = 0 W[3] = AddC(E, B[3]);
 W[4] = Add(P[5.H], B[4]);
 E = 0 W[5] = AddC(E, B[5]) Done;

 Program(PUaaBufCombineLast565, 0x00)
 // Multiply by 64/N
 E = Global[0] W[8] = MultL(A[1], E);
 E = Global[0] W[1] = MultU(A[0], E);
 W[1] = Add(A[1], B[8]);
 E = Global[0] W[0] = MultL(A[0], E);
 // Divide by 64
 E = 0x4 W[1] = MultL(A[1], E);
 E = 0x4 W[0] = MultU(A[0], E);
 C[0.L] = Or(A[0], B[1]);

Miranda P10 Programmers Guide Antialiasing

3Dlabs Proprietary and Confidential 9-9

 // Multiply by 64/N
 E = Global[0] W[8] = MultL(A[3], E);
 E = Global[0] W[3] = MultU(A[2], E);
 W[3] = Add(A[3], B[8]);
 E = Global[0] W[2] = MultL(A[2], E);
 // Divide by 64
 E = 0x4 W[3] = MultL(A[3], E);
 E = 0x4 W[2] = MultU(A[2], E);
 C[0.M] = Or(A[2], B[3]);

 // Multiply by 64/N
 E = Global[0] W[8] = MultL(A[5], E);
 E = Global[0] W[5] = MultU(A[4], E);
 W[5] = Add(A[5], B[8]);
 E = Global[0] W[4] = MultL(A[4], E);
 // Divide by 64
 E = 0x4 W[5] = MultL(A[5], E);
 E = 0x4 W[4] = MultU(A[4], E);
 C[1.H] = Or(A[4], B[5]) Done;

The program addresses are set up as follows, where DownloadPixUnitProgWithCount and
ExtendPixUnitProgWithCount are macros that perform the required PixelProgramAddr
and PixelProgramData dma and also update a program length count in pContext.

P10PixelMode.bits.TileAddrFirst = 0;
DownloadPixUnitProgWithCount(PUaaBufCombineFirst565);

P10PixelMode.bits.TileAddrMiddle = pContext->dwPixelProgramLength;
ExtendPixUnitProgWithCount(PUaaBufCombineMiddle565);

P10PixelMode.bits.TileAddrLast = pContext->dwPixelProgramLength;
 ExtendPixUnitProgWithCount(PUaaBufCombineLast565);

Miranda P10 Programmers Guide Exotica

3Dlabs Proprietary and Confidential 10-1

 10
10 Exotica

10.1 Beyond ordinary graphics functions (imagination, examples)

10.2 Vertex Shader applications

10.2.1 Tessellation
Tessellation is the process where some high order surface is divided up in to triangles or
quads for display. The finer the tessellation the higher the quality of the image will be. It
only makes sense for the Vertex Shading Unit to get involved in the tessellation if the level
of tessellation is high enough to amortise the additional driver work to present the
individual patches for tessellation and to accommodate a two pass algorithm3 where the
first pass generates the tessellation points and the second pass transforms and lights
them.
There are many ways to describe these surfaces - Bezier patches, Cubic splines, B-
splines, NURBS, etc. and the thing they all have in common is a set of control points and
a weighting function which relates the control points to each tessellation vertex.
The surfaces are frequently defined by a matrix equation as follows (assuming a bicubic
patch, but similar formulations exist for surfaces with a different order):

Q u, v() = UMPM TV

U = u3 u2 u1 u[]
V = v3 v2 v1 v[]T

where P is the 4x4 matrix of control points and M is the basis matrix which is a function of
the surface type.
Some basis matrices are:

3 In some cases a single pass algorithm can be used where the tessellation points are calculated, transformed and light in the
same program with out intermediate results (i.e. the tessellated vertices) being written out to memory. If the tessellation level
for a patch if fine enough or a number of patches can be tessellated before changing to the second pass then there is probably
not much in the performance of either method. The two pass method is more robust and probably easier to manage (from a
vertex shading program perspective).

Exotica Miranda P10 Programmers Guide

10-2 Proprietary and Confidential 3Dlabs

MBezier =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

 MB− spline =
1
6

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 MCatmull− Rom =
1
2

−1 3 −3 1
2 −5 4 −1

−1 0 1 0
0 2 0 0

These equations can also be cast into the form:

Q u, v() = ω ijuvPij
j = 0

3

∑
i = 0

3

∑

where ω ijuv is a weight for a set of i, j, u and v values.

The tessellation not only generates positions but can also generate colours, textures and
normals. Many types of surfaces can also provide the analytic normals at the tessellation
vertices which will be more accurate and less hassle (for the user).
Each tessellation vertex is assigned a u, v position (normally in the range 0…1) and the uv
tuple together with the order of the surface (i.e. linear, cubic, etc.) and the basis functions
define the weights applied to each control point (the number of control points is strongly
related to the order of the surface) to calculate the parameter at the uv position. Each uv
position will have its own set of unique weights. If a triangle is being tessellated in the
plane, maybe for displacement mapping (see later) or to get better lighting, then the uv
weights are replaced by the barycentric coordinates for the required tessellation vertices.
The basic principal is that the control points are stored in the coefficient memory and the
uv4 position or set of weights5 for that uv position are written to the Vertex Shader as if
they were the parameters for a corresponding tessellation vertex. The last weight
parameter is set up as the trigger parameter and when this is received, conceptually at
least, the vertex shading program is run. It is little more than one or more weighted sums
of the control points. The results of the weighted sums are written as parameters and the
window coordinate is set to some value (it is later discarded) which will pass through the
clip test process. The Vertex Machine Unit is set up to do Points and the Geometry Unit
has the UploadParameters mode set to VertexBufferData. The Context Unit has the
address where in memory the tessellation vertex parameters are to be written loaded into
the VertexBufferAddr register. The WaitForCompletion command can be used between
passes to ensure the results of the first pass are in memory before the second pass
starts, however this is not really necessary except when the number of tessellation
vertices is low. The second pass will read the results of the first pass as a vertex array.
For bicubic patches there are 16 control points so each component takes 16 multiply
accumulated to calculate so for just a xyz position will take 48 cycles or an effective
throughput of 3 cycles for 16 VPs. As more data types (colour, texture, etc.) are

4 Just storing the uv position would result in many more calculations being needed. For example all the products of (u3, u2, u, 1)
and (v3, v2, v, 1) would be needed. The cost of this can be reduced by using Homer's rule for polynomial evaluation.
5 Using a set of weights for each uv position makes the assumption that it is more economical to calculate the weights once and
store them rather than calculate them on the fly. This is a reasonable assumption as patches are rarely tessellated in isolation
within a frame or between frames. The set of weights lend themselves to being cached in on-card memory.

Miranda P10 Programmers Guide Exotica

3Dlabs Proprietary and Confidential 10-3

evaluated then the through put will go down. When processing a mesh of patches the
circular buffer addressing mode in the coefficient memory can be used so only the four
new control points need to be written, replacing the oldest set of 4 control points.
OpenGL evaluators can be done using the scheme outlined so far. The evaluators allow
for different orders for each parameter type being evaluated and this can be handled by
different programs and sets of weights or by promoting all evaluators to the highest order
(degree elevation). The vertex array allow the individual parameters to be read in
consecutively or from their own arrays so there is plenty of flexibility here to allow the data
to be read in whatever format is convenient for tessellation. The preservation of the
current parameters and the material (if colour material is enabled) is something the ICD
will need to worry about.
DX now includes some support for standard tessellation methods such as Bezier, but also
has a unique triangle tessellation scheme which uses the normals at each vertex to
predict how the surface is behaving. The purpose of this scheme is to allow existing
artwork to be 'improved', however Microsoft only recommend one or two levels of
tessellation so the driver overhead per triangle may be too much to make doing the
tessellation in P10 viable.
The driver should test that the control mesh is in view before proceeding to tessellate it.
The position (regular or irregular) and sequence the tessellation vertices are generated in
is defined by the order the weights (or barycentric coordinates) are presented in. On the
second pass the preferred primitive type is Grid as this maximises the reuse of vertex
data and for high order surfaces this is easy to arrange as the uv positions are basically
organised on a rectilinear grid. For triangles this is not as easy so the best primitive type
is a triangle strip with some duplicated tessellation vertices at the end of each 'row' to
allow one continuous strip to weave its way in serpentine fashion over the area of the
base triangle.
The type of tessellation can be fixed or adaptive. If adaptive tessellation is required then it
is up to the driver to estimate the projected area on the screen of the control points (or the
convex hull holding the control points) and select (or generate) an appropriate set of
weights. It probably makes more sense to do this estimation on the control mesh rather
than individual patches because the main danger to watch out for with adaptive
tessellation is cracks between patches where different levels of tessellation have been
selected.
This scheme can be adapted to subdivision surfaces, but with the driver probably handling
the triangles or quads with irregular vertices (i.e. the valence or number of edges arriving
at a vertex is not the usual amount for that type of subdivision surface).

10.2.2 Displacement Mapping
Displacement mapping is a technique where a surface is tessellated and the tessellation
vertices are displaced along the normal by an amount looked up from a displacement
map. The displacement map is really a height field stored in a texture map. The
displaced surface will naturally also perturb the normal from the base surface so the
surface lighting will match the new geometry. The advantage displacement mapping has

Exotica Miranda P10 Programmers Guide

10-4 Proprietary and Confidential 3Dlabs

over bump mapping6 is that the visibility along the silhouette edge follows the cues given
by the lighting, but this comes at a very high cost as the tessellation triangles need to be
very small - of the order of a few pixels in size.
The displacement mapping process can be broken down into the following stages:

• Tessellate the input surface. This has already been covered.

• For each tessellation vertex sample the displacement map and return the
displacement D for each vertex. The sampled value of D cannot be negative
otherwise the texture filtering will not work so the displacement map is biased to
make all entries positive. The sampled results are stored in an array which can then
be read in as an element of a vertex array operation.

• Perturb the vertex position along the direction of the normal using the equation:

 ��′ P = P + Ds
��
N

where s is an optional scale value. The original vertex position is calculated as per
the tessellation methods already outlined.

• Calculate the new normal for the perturbed position.

• Render the new triangles.

We will now expand on two of these stages: how to sample the displacement map and
how to calculate the new normal.

10.2.2.1 Sampling the Displacement Map

To sample the displacement map each tessellated vertex is past to the rasteriser
subsystem as a single pixel point. The point parameters hold the u, v coordinates of the
displacement map and the x, y coordinates of the point's location in the displacement
buffer where the displacement value is to be written. Successive points will increment
through the buffer.
The Texture Coordinate program uses the u, v values directly and doesn't perspectively
divide them. The lod value is taken from a global register (if needed) as a fixed level of
detail is used across the whole primitive7 The Shading Program just copies the texture
sample to the fragment's colour and the Pixel Address and Pixel Program will append the
colour to the displacement buffer.
The displacement buffer is written in byte planar format, however the vertex array support
in the GPIO expects to read vertex data in packed byte format. The two formats are
shown in the following diagram:

6 Bump mapping simulates fine geometric detail by faking the lighting at each pixel by using texture operations with a height
map (or some other encoding of the fine surface detail) to give the specular appearence of desired surface. As only the shading
is modified the silhouette edge still looks smooth. Bump mapping does not introduce any more triangles in to the scene.
7 A varying level of detail also implies the size of the tessellation triangles is changing over the area of the base surface and while
this will concentrate the detail where it is most visible it has to be done very carefully not to introduce cracks. If triangles which
share a common edge are tessellated and displaced by differing amounts along the common edge then the two triangles will no
longer form a continuous surface. This is a very hard problem to solve so the simplification of a constant tesselation level over
the base surface is assumed here.

Miranda P10 Programmers Guide Exotica

3Dlabs Proprietary and Confidential 10-5

This difference in formats will be solved in future chips by allowing the GPIO to read data
in planar byte format, but for now two solutions present themselves.

• The displacement data can be written sparse. Successive points differ in x by 4 and
each used byte is written to a separate buffer. The vertex array is set up to read a
packed colour from each buffer and the least significant byte will appear as the lowest
floating point component. The other three components are undefined. This method
will use one input parameter per byte so is quite wasteful of memory and bandwidth,
however if only a single displacement byte is being used then this is not too bad.

D63 D62 D61 D60 D59 D58 D57 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0D56

A63 A62 A61 A60 A59 A58 A57 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0A56

C63 C62 C61 C60 C59 C58 C57 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0C56

B63 B62 B61 B60 B59 B58 B57 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0B56

D15 C15 B15 A15 D14 C14 B14 A3 D2 C2 B2 A2 D1 C1 B1 A1 D0 C0 B0 A0A14

D63 C63 B63 A63 D62 C62 B62 A51 D50 C50 B50 A50 D49 C49 B49 A49 D48 C48 B48 A48A62

D31 C31 B31 A31 D30 C30 B30 A19 D18 C18 B18 A18 D17 C17 B17 A17 D16 C16 B16 A16A30

D47 C47 B47 A47 D46 C46 B46 A35 D34 C34 B34 A34 D33 C33 B33 A33 D32 C32 B32 A32A46

Packed format for sixty four 32 bit pixel (DCBA)in four adjacent memory words

Planar format for sixty four 32 bit pixel (DCBA)in four adjacent memory words

Exotica Miranda P10 Programmers Guide

10-6 Proprietary and Confidential 3Dlabs

• The displacement buffer is reformatted using a separate pass after the sampling step
but before it is read as a vertex array. This can be done by setting up four texture
reads (assuming we are repacking 32 bits) which when combined and written in byte
planar format will give the correct results when read in packed byte format. The
above diagram shows the desired mapping (read A0, A16, A32, A48 and output as
one pixel), (read B0, B16, B32, B48 and output as next pixel), etc. This can be done,
albeit with a fairly complicated program.

The WaitForCompletion command can be used to ensure the vertex array processing
doesn't start until the last of the displacement data has been written to memory.

10.2.2.2 Calculating the Normal

The simplest solution here is not to use vertex lighting but to use the same per pixel
lighting techniques used in bump mapping to shade the displaced geometry. The
displacement and what ever form the bump map information is encoded (for example as a
normal perturbation map) in can share the same texture map, or be in separate maps if
more convenient or the displacement and bump mapping are done to different resolutions.
If the displaced normal is required for vertex lighting then this needs to be calculated but
the Vertex Shader doesn't have access to any of the other local displaced vertex
information. We can borrow from the bump mapping algorithms and sample the normal
perturbation map at the same time the displacement is sampled. The normal perturbation
is passed back to the vertex shading program in the same word used to send the
displacement. The normal perturbation tells how to rotate (or tip) the normal so it will
point in the correct direction after the vertex displacement has been applied. The normal
perturbation map usually encoded the rotation in tangent space so the original normal will
need to be transformed into this space before it can be rotated. The subsequent lighting
calculations can be also be done in tangent space. The bump mapping literature should
be consulted for details on this.
Cearly from the above the simplest thing to do is to use bump map lighting per pixel and
this also has the advantage of only requiring a single value (byte) to be passed back as
the displacement value so the additional pass to convert the planar byte data to packed
byte data can be avoided.

10.3 Texture Co-ordinate applications

10.3.1 Convolution
A convolution example has been given for the Pixel Unit and this is the fastest way to do a
simple convolution, unfortunately things get more complicated when the convolution filter
goes outside of the image array when sampling near the edge. Several schemes are
used to fill in for the missing pixels, ranging from repeating the edge pixels, repeating a
row of border pixels or substituting a constant border colour. These are very difficult or
time consuming for the Pixel subsystem to handle, but are handled trivially by the texture
wrap modes.
The Texture Coordinate Unit could generate the addresses in much the same way the
Pixel Address Unit does and the Shading Unit do the weighted accumulation for the
convolution operation. There is no efficient way for the Texture Coordinate Unit to
broadcast the same value (current convolution weight) to each fragment processor in the
Shading Unit or for the Shading Unit to pick up a pass dependent value from its global

Miranda P10 Programmers Guide Exotica

3Dlabs Proprietary and Confidential 10-7

registers. The solution here is for the pixel data to be returned to the Texture Coordinate
Unit using feedback and the weighted accumulation to be done here. This has the
advantage that the convolution weights and accumulation can all be done in floating point.
The program would consist of a series of subroutine calls to fetch the sample points and
do the weighted accumulation. The GRegBaseReg is set on each call to sequence
through the weights. There will be one subroutine call per convolution weight.

10.3.2 High Order or Multi-tap Filters
The previous example showed how such a filter could be written, albeit using a trivial
example, but how does this cope with a more complex filter such as a bicubic filter? With
such a filter you calculate a weighting using an equation (for 1D) like:

 w u()= au3 + bu2 + cu + d

where a, b, c and d are the cubic factors and u is the distance from the centre of the
sample. If the 2D filter is separable then a similar equation exists but parameterised in v
(for displacement in y) and the product of the u and v weights is used. These equations
can be programmed quite easily, particularly if reuse is made of weight as successive
samples along one axis are made. The calculation of these weights has an approximate
budget of 30 or so cycles so is probably not going to be the limiting factor.
If the equations become more complicated or are not separable the calculation of the
weights may become a problem. Basically we are trying to evaluate a function of two
variables and the input variables have a very limited input range. This can be converted
to a texture map lookup so the complexity of the function, even if it is asymmetric, is
suddenly an non issue. The granularity of the function is determined by the size of the
texture map and if the weights are limited to 8 bits this can be further improved by using
bilinear filtering to do piece wise linear approximation of the function.
In this example we will take the 4x4 pixels in the neighbourhood of the centre sample point
and look up in a texture map the weight (or height) of the filter. Note the centre sample
point is not aligned on a fixed grid as we may be zooming or applying some warping
function. The original texture map will be sampled using nearest neighbour filtering and
the filter texture map is bilinearly filtered and the weighted sum is done in the Shading Unit
via the multi pass method. Ideally the two texture maps are assigned to their own bank in
the Primary Texture Cache to reduce the amount of cache misses.
This type of filter takes two cycles per sample point to run (one to read the original image
sample and one to read the corresponding filter weight) so at 200MHz will have an output
fragment rate of 6.25M per texture pipe. This is not blindingly fast compared to normal
bilinear filtering but it doesn't cost any gates to do and is fast enough for video or
photoshop applications.

// To look up the appropriate weight the uv distance from the sample point
// to the centre sample point (in the range -2…+2)is scaled and biased.

TextureSample4x4:

// Calculate sample point from plane equation.
reg[s] = MAdd (dPdx[@S], x, dPdy[@S], y);

Exotica Miranda P10 Programmers Guide

10-8 Proprietary and Confidential 3Dlabs

reg[t] = MAdd (dPdx[@T], x, dPdy[@T], y);

// Add in the origin value and scale the coordinates to be in texture map
// units.
reg[s] = Add (reg[S], PStart[@S], planeScale[@S]);
reg[t] = Add (reg[T], PStart[@T], planeScale[@T]);

// Run shading program to reset texture accumulators.
// TexID = 0, destReg = 0, run 'first' program.
SendCommand (Nop, 0, 0, loadShade, noFeedback, firstProg);

// Calculate the distance from the centre sample point to the origin sample
// point.
reg[ds] = Fract (reg[s]);
reg[dt] = Fract (reg[t]);

// Move s and t back to the origin of the 4x4 kernel and force the fraction
// part to be reset so the nearest sampling will always sample the lower
// coordinate. We may need to add small epsilon to prevent rounding
// errors, or FloatToInt followed by IntToFloat.
reg[s] = Sub (reg[s], 1.0);
reg[t] = Sub (reg[t], 1.0);
reg[s] = Sub (reg[s], reg[ds]);
reg[t] = Sub (reg[t], reg[dt]);

reg[sSaved] = Pass (reg[s]);
reg[dsSaved] = Pass (reg[ds]);

// Visit the 16 neighbouring pixels and calculate the weights
loopCount[0] = 4;
loopCount[1] = 4;

loop:

Call ProcessSample;

reg[s] = Add (reg[s], One);
reg[ds] = Add (reg[ds], One),

// Dec loop counter 0 and jump if not zero to loop.
DJNZ (0, loop);

// If here then we have finished a row so reset the s values for the next
// row.
reg[s] = Pass (reg[sSaved]);
reg[ds] = Pass (reg[dsSaved]);
loopCount[0] = 4;

Miranda P10 Programmers Guide Exotica

3Dlabs Proprietary and Confidential 10-9

// Move on to the next row
reg[t] = Add (reg[t], One);
reg[dt] = Add (reg[dt], One);

// Dec loop counter 0 and jump if not zero to loop.
DJNZ (1, loop);

// Scale the result and output.
SendCommand (Nop, 0, 0, noLoadShade, noFeedback, lastProg),
Done;

// Process sample subroutine. Using s, t, ds and dt two textures will be
// read. The first one is a pixel from
// the image being filtered, and the second one is the corresponding weight
// from the filter kernel texture map.
ProcessSample:

output[0] = Wrap (reg[s], One);
output[1] = Wrap (reg[t], One);

// Store texture sample in destReg 0. Don't run a program
// until the weight is also loaded.
SendCommand (FilterTexture, 0, 0, loadShade, noFeedback, defaultProg);

// Compute the weight texture map address. The ds and dt values are the
// coordinates, but in the
// range 0…4 so these are scaled to be in the 0…1 range expected.
// the wrap where a scale of 6 will be used (log2 (map size) - log2(4)).
reg[filterS] = Scale (reg[ds], -2);
reg[filterT] = Scale (reg[dt], -2);

output[0] = Wrap (reg[filterS], One);
output[1] = Wrap (reg[filterT], One),
SendCommand (FilterTexture, 1, 1, loadShade, noFeedback, middleProg);
return;

10.3.3 Ray Casting
Ray casting is a common operation when voxel processing. Without going into too much
detail about how and where ray casting is used the basic algorithm is to send a ray into
the 2D or 3D environment and walk along it querying the environment. Based on what if
found or on some accumulation along the ray a colour is calculated, and/or the ray
terminated.
The ray vector is just a texture coordinate (two or three D). Probing the environment is a
2D or 3D texture map access. The data can be returned to the Texture Coordinate Unit to
play some part in terminating the ray (and hence program if all fragments reach this

Exotica Miranda P10 Programmers Guide

10-10 Proprietary and Confidential 3Dlabs

condition) and/or passed to the Shading Unit for the colour computation. Walking along
the ray is an addition to the texture coordinates.

10.3.4 Bump Mapping
Bump mapping uses a gradient field8 stored in one texture map to perturb the texture
coordinates used to access a second texture map. The second texture coordinate set
and texture map is typically set up to return the specular colour and the perturbations
provided by the first texture map gives the surface a wrinkled or bumpy look.
The gradient field needs to be aligned or rotated with the texture coordinate (representing
the surface normal) before it can perturb it and this is done using a matrix multiplication.
The matrix can be held constant over the triangle or it can be varied to give a more
realistic look, but at added cost. How these matrices are set up is beyond the scope of
this example and we will just assume a fixed matrix (as in DX7).
This example uses the DX7 method where the lod of the second texture map is calculated
prior to the coordinates being perturbed (and avoids coping with a non analytically
differentiable texture function).

BumpMap
// Set up the base addresses (used with @ operator) for texture 0.
// Lod is calculated but not used by Texture Index - could avoid
// calculating it but this uses existing code for compactness. Bump maps
// don't work well with mip map filtering.
PlaneBaseReg= 0,
GRegBaseReg = 0,
Call (TextureWithLod);

// TexID = 0, destReg = 0, no program run (not end of tile).
SendCommand (FilterTexture, 0, 0, noLoadShade, feedback, defaultProg);

// Second texture.
PlaneBaseReg= 4,
GRegBaseReg = 4,
Call (TextureWithBump);

// TexID = 1, destReg = 0, run default program (now end of tile).
SendCommand (FilterTexture, 1, 0, loadShade, noFeedback, defaultProg),
Done;

TextureWithBump:

// Calculate sample point from plane equation for the texture coordinate we
// are going to perturb. We do this while we are waiting for the feedback
// data to come back.

8 The original paper by Blinn used a height field and derived the local gradients as needed, but this step can be avoided by
storing the gradient information in the texture map.

Miranda P10 Programmers Guide Exotica

3Dlabs Proprietary and Confidential 10-11

reg[Q] = MAdd (dPdx[@Q], x, dPdy[@Q], y), savedp;
reg[S] = MAdd (dPdx[@S], x, dPdy[@S], y);
reg[T] = MAdd (dPdx[@T], x, dPdy[@T], y);

// Add in the origin value
reg[Q] = Add (reg[Q], PStart[@Q]);
reg[S] = Add (reg[S], PStart[@S]);
reg[T] = Add (reg[T], PStart[@T]);

DivResult = Div (reg[%Q]);

// Calculate the level of detail - see earlier for more comments.
lod.Load = MSub (dPdx[@S], reg[Q], dxSaved, reg[S], planeScale[@S]);
lod.MergeMax = MSub (dPdx[@T], reg[Q], dxSaved, reg[T], planeScale[@T]);
lod.MergeMax = MSub (dPdy[@S], reg[Q], dySaved, reg[S], planeScale[@S]);
lod.MergeMax = MSub (dPdy[@T], reg[Q], dySaved, reg[T], planeScale[@T]);

// Do the perspective division.
reg[s] = Mult (DivResult, reg[S]);
reg[t] = Mult (DivResult, reg[T]);

output[3] = lod;

// We will stall here waiting for all the feedback data to be returned, but // we have managed to do

approximately 16 cycles of useful work.
WaitForFeedback;

// Read and store the two perturbation values in registers as floating
// point numbers.
reg[dx] = IntToFloat (feedback (Byte, 0, Signed));
reg[dy] = IntToFloat (feedback (Byte, 1, Signed))
FinishedWithFeedbackData;

// Transform input values using a matrix held in the global registers.
// Note to (mat00, mat01) and (mat10, mat11) are stored in the same 64 bit
// word so they can be accessed simultaneously.
reg[dxt] = MultAdd (reg[dx], GReg[mat00], reg[dy], GReg[mat01]);
reg[dyt] = MultAdd (reg[dx], GReg[mat10], reg[dy], GReg[mat11]);
reg[dxt] = Add (reg[dxt], GReg[mat20]);
reg[dyt] = Add (reg[dyt], GReg[mat21]);

// Add in transformed and scaled perturbation to texture coordinates.
reg[s] = Add (reg[s], reg[dxt]);
reg[t] = Add (reg[t], reg[dyt]);

// If we were worried about high repeat counts we could have multiplied the
// perturbation by Q, added it to S and T and then used the Wrap

Exotica Miranda P10 Programmers Guide

10-12 Proprietary and Confidential 3Dlabs

// instruction to do the multiply by the reciprocal.
output[0] = Wrap (reg[s], one);
output[1] = Wrap (reg[t], one),
return;

10.4 Pixel applications
Pixel Unit applications include gradient fills with or without texture co-ordinate application,
convolution, multipass with Pixel address, multibuffers, Game of Life etc.

Miranda P10 Programmers Guide Index

3Dlabs Proprietary and Confidential 11-1

11
11 Glossary & Index

PAU Pixel Address Unit
TCU Texture Coordinate Unit

Miranda P10 Programmers Guide Index

3Dlabs Proprietary and Confidential 11-1

INDEX

“B” Field structured blocks 8-66, 8-72
“P” 16x8 MC structured blocks 8-74
“P” Field structured blocks 8-64, 8-70
2D Operations (blits, pattern fills, fonts 8-43
Accumulation Buffers 8-40
Alpha Blending 8-58
Antialiasing 9-1
Bitmap Depth Conversion 8-53
Blending 8-36
Bump Environment Mapping 8-22
Circular DMA Buffers 3-4
Clipping Macroblocks 8-60
Color Pattern Operations 8-45
Colour Lookup 8-21
Cube Mapping 8-25
Digital Port. 5-8
Digital Video Output 5-8
Dithering 8-39
DMA buffers 3-2
Downloading other unit programs 5-3
Downloading pixel address unit programs 5-3
Downloading Textures 3-13
Drawing Primitives 3-12
Dual Prime blocks 8-68
DXVA Driver 3-13
Example code for an interrupt routine 6-3
Filtertexture mode 4-14
Flat Shading 8-14
Flow control registers 4-16
Frame structured Pictures 8-60
Framebuffer 3-1
Full Scene AA (FSAA, Super sampling, “T”

buffer) 9-4
GLINT MX Hardware Reference Manual 1-2
Gouraud Shading (Diffuse and Specular) 8-16
gradient fills 10-12
How to draw a Gouraud-shaded triangle 4-4
Initialization 5-1
Input Data (plane equations, textures) 4-33
Introduction 5-1
Level of detail related registers 4-16
Localbuffer processing 8-28

Mipmap linear 3D textures 4-29
Monochrome Pattern Fills 8-47
Multi-word Arithmetic 4-35
OpenGL Antialiasing 9-3
OpenGL Programming Guide 1-2
OpenGL Reference Manual 1-2
Output Data (Texture coordinates, shading

parameters) 4-14
PCI 1-2
PixelProgramData 9-9
Probe & Locking 8-54
Program I/O 3-2
Programs act as transfer functions 4-17
Rendering 8-1
Sample point position 9-1
Screen To Screen Copies (BitBlt) 8-48
Setting program start addresses for tile programs

 5-3
Shader program 8-59
Shading 4-32
Shading (Gouraud, flat, modulate etc.) 8-13
Simple Solid Color Operations 8-43
Specifying program start addresses 5-2
Synchronizing the Core with Video Output 6-1
TexCoord Program 8-59
Text Font Rendering 8-51
Texture Based Shading 8-16
Texture Co-ordinate (Introduction) 4-12
Texture scale register 4-14
Texturing 8-18
Upload Facilities 3-23
Using Video Scaling 5-6
USWC 3-2
Vertex Buffers (GPIO) 3-10
Vertex Processing 8-1
Vertex Shading (introduction) 4-4
Vertex Transformation 4-10
Video Operations 8-54
Video Output 5-4
Video Port 3-13
VideoUpdate.MainReg 6-1

	P10
	Draft
	3Dlabs®
	P10
	Proprietary and ConfidentiaL Information
	1 Introduction
	1.1 Introduction
	1.2 How to Use This Manual
	1.3 Further Reading

	2 Memory
	2.1 Data Formats
	2.1.1 Local Memory Data Format
	2.1.2 Bypass Accesses
	2.1.3 GPIO Data Format
	2.1.4 Re-circulating Data

	2.2 Memory Management Introduction
	2.2.1 Advantages and Disadvantages of Virtual Memory

	2.3 Address Translation Without Page Faulting
	2.3.1 Address Translation Initialisation
	2.3.1.1 MemoryPageTableLower and MemoryPageTableUpper
	2.3.1.2 MemoryPageTableLimit
	2.3.1.3 MemoryPageTableLimit exceeded
	Page Table Format

	2.3.1.4 The State Field
	2.3.1.5 ContinueOnFault Field
	2.3.1.6 PhysicalPage and Size Fields
	2.3.1.7 Type Field

	2.4 Memory Management With Page Faulting
	2.4.1 Page Table Format Revisited
	2.4.2 DMA Controller
	2.4.2.1 Manipulating multiple 4K pages

	2.4.3 Page Replacement Algorithms

	3 Input and Output
	3.1 Where to store commands and data
	3.1.1 Host memory
	3.1.1.1 Framebuffer vs. Host Memory
	3.1.1.2 Framebuffer
	3.1.1.3 Host chipset/CPU implications

	3.2 Programed I/O vs. DMA
	3.2.1 The Input Message Port
	3.2.2 The DMA Interface

	3.3 Circular DMA Buffers
	3.3.1 Layout, Read/Write Pointers and Scheduling - Software Implementation:
	3.3.1.1 Wait For Space:
	A Mental Block
	Learning to Read:
	Round and Round and Round and ...

	3.3.1.2 Queue Some Data:
	3.3.1.3 Send The Data:

	3.4 DMA
	3.5 Dual Command Streams
	3.5.1 DMA stream
	3.5.2 Vertex and Index Data Stream
	3.5.3 Output DMA

	3.6 Multiple Contexts
	3.6.1 Context Switching
	3.6.2 User-induced and Isochronous Switches
	3.6.2.1 Time Stamps

	3.6.3 Context Scheduling
	3.6.4 Driver Controlled Scheduling:
	3.6.5 Context Security
	3.6.5.1 Command Ids and Sync Ids:

	3.7 Vertex and Index Buffers (GPIO)
	3.7.1 Organizing data in memory
	3.7.2 Caching
	3.7.3 Preparing to Draw Primitives
	3.7.4 Drawing Primitives

	3.8 Downloading Textures
	3.9 DXVA Driver
	3.10 Video Port
	3.10.1 Video Stream Formats
	3.10.1.1 Empty Cycles
	3.10.1.2 Blanking Data

	3.10.2 SAV and EAV Timing Reference Signals
	3.10.3 DTV Display Formats
	3.10.4 Fields and Frame
	3.10.5 Frames and Memory
	3.10.6 Frame Interrupts
	3.10.7 Programming Summary
	3.10.8 Programming Example
	3.10.9 Register Interface
	3.10.9.1 Enable
	3.10.9.2 Mode
	3.10.9.3 SAVPos & EAVPos
	3.10.9.4 BufAddr[0..1][0..2]
	3.10.9.5 RdIdx
	3.10.9.6 WrIdx

	3.11 Upload Facilities

	4 Programming Overview
	4.1 Transformation and Lighting
	4.1.1 GPIO
	4.1.2 Vertex Shading Unit

	4.2 Texture and Rendering
	4.2.1 Texture Coordinate Programme
	4.2.2 Shading
	4.2.3 Framebuffer Processing
	4.2.4 How to draw a Gouraud-shaded triangle

	4.3 Fixed mode and state registers
	4.4 Programmable Units
	4.4.1 Data flows among units
	4.4.2 Vertex Shading Introduction
	4.4.2.1 Input Data
	4.4.2.2 Output Data
	4.4.2.3 Typed parameters
	4.4.2.4 Special parameters
	4.4.2.5 Memory
	4.4.2.6 Programs act as transfer functions
	4.4.2.7 Instruction Set Summary
	4.4.2.8 Vertex Transformation

	4.4.3 Texture Co-ordinate Unit (Introduction)
	4.4.3.1 Input Data
	Feedback data
	Global registers
	Interpolated data
	Texture scale register

	4.4.3.2 Output Data (Texture coordinates, shading parameters)
	Filtertexture mode
	Passthrough mode

	4.4.3.3 Temporary storage
	Constants
	Working registers
	Level of detail related registers
	Flow control registers
	Miscellaneous registers

	4.4.3.4 Programs act as transfer functions (data types – bytes, multi-byte arithmetic)
	4.4.3.5 Instruction Set Summary
	C-Fifo register
	Special
	Update-flag
	Local register
	Operations
	Operands
	Sequence control
	Save

	4.4.3.6 Examples
	Non-perspective corrected 2D texture coordinate program
	Perspective corrected 2D texture coordinate program
	Perspective corrected & mipmapped 2D texture coordinate program
	Two stage perspective corrected & mipmapped 2D texture coordinate program
	Perspective corrected & mipmapped 2D texture coordinate function
	Mipmap linear 3D textures
	Tricks of the trade

	4.4.4 Introduction to Shading
	4.4.4.1 Input Data (plane equations, textures)
	4.4.4.2 Output Data (fragment colors)
	4.4.4.3 Meory (instructions, global data, temporaries)
	4.4.4.4 Programs act as transfer functions (data types – bytes, multi-byte arithmetic)
	4.4.4.5 Argument Formats
	4.4.4.6 Multi-word Arithmetic
	4.4.4.7 Saturation
	4.4.4.8 Subroutines and Relative Addressing
	4.4.4.9 Opcodes

	5 Initialization
	5.1 Memory Allocation (typical positions for LB, FB)
	5.2 Page Tables
	5.3 Context Record
	5.4 Registers
	5.5 Programs
	5.5.1 Program Initialization
	5.5.2 Specifying program start addresses
	5.5.3 Downloading programs
	5.5.4 Downloading pixel address unit programs
	5.5.5 Downloading other unit programs
	5.5.6 Setting program start addresses for tile programs
	5.5.7 Running programs

	5.6 Video Output
	5.6.1 Programming the Video Mode, RAMDAC and LUTs
	5.6.1.1 Disabling the current video mode.
	5.6.1.2 Initializing the video channels.
	5.6.1.3 Initializing the LUT(s).
	5.6.1.4 Programming the Video Timing Registers.
	5.6.1.5 Enabling the New Video Mode

	5.6.2 Using Video Scaling
	5.6.3 Dual Head Video Output
	5.6.3.1 Disabling the current video mode
	5.6.3.2 Initializing the video channels.
	5.6.3.3 Initializing the LUT(s).
	5.6.3.4 Programming the Video Timing Registers.
	5.6.3.5 Genlocking

	5.6.4 Digital Video Output
	5.6.4.1 The Digital Port.

	6 Synchronization
	6.1 Synchronization with Core and with VTG
	6.1.1 Synchronizing Video Channel Updates with Video Output
	6.1.2 VideoUpdate.MainBuffer
	6.1.3 VideoUpdate.MainReg
	6.1.4 Synchronizing the Core with Video Output

	6.2 Invalidating Caches
	6.2.1 Texture Cache Control
	6.2.2 Pixel and Local Buffer Cache Control

	6.3 Interrupts
	6.3.1 Interrupts & Synchronization
	6.3.1.1 CommandIDApi Interrupts
	6.3.1.2 Example code for a rendering routine
	6.3.1.3 Example code for an interrupt routine:
	6.3.1.4 Sync Interrupts

	7 Image Download (How to, Setup)
	7.1 Pixel Data
	7.1.1 Native download setup
	7.1.2 Native download operation
	7.1.3 Translating downloads
	7.1.4 Palettised translating downloads
	7.1.4.1 Texture pipe method
	7.1.4.2 GPIO method

	7.1.5 Downloads with patterned brushes

	7.2 Texture maps (download, MIPmap generation)
	7.3 Bitmask data
	7.3.1 Opaque Monochrome Bitmap Downloads
	7.3.2 Rendering Host Memory Font Glyphs/Transparent Downloads
	7.3.3 Font Glyph Downloads To Offscreen Cache

	7.4 Performing uploads
	7.4.1 Upload setup
	7.4.2 Upload operation
	7.4.3 Monochrome uploads
	7.4.3.1 Programs for monochrome uploads
	7.4.3.2 Monochrome upload setup
	7.4.3.3 Monochrome upload operation

	8 Rendering
	8.1 Program-to-program parameter consistency
	8.2 Selecting the primitive type for the vertex stream target (triangles, polymode, 2D rectangles/clears)
	8.3 Vertex Processing
	8.3.1 Transformation
	8.3.2 Texture Operation
	8.3.3 Fog
	8.3.3.1 FogExp
	8.3.3.2 FogExp2
	8.3.3.3 FogLinear

	8.3.4 Lighting
	8.3.4.1 Generalized light pipeline:
	8.3.4.2 Multiple Directional Lights
	8.3.4.3 Multiple Local Lights
	8.3.4.4 Full Function Lights
	8.3.4.5 Material

	8.3.5 User Clip Planes
	8.3.6 Projection and Viewport Mapping

	8.4 Shading (Gouraud, flat, modulate etc.)
	8.4.1 Flat Shading
	8.4.2 Gouraud Shading (Diffuse and Specular)
	8.4.3 Texture Based Shading

	8.5 Texturing
	8.5.1 Texture co-ordinate generation (1D, 2D, 3D; sharing the work on multiple co-ordinate sets)
	8.5.2 Colour Lookup
	8.5.3 Bump Environment Mapping
	8.5.4 Cube Mapping

	8.6 Localbuffer processing (setting up the mode registers)
	8.7 Framebuffer processing (Dithering, Logical Ops, Blending, Accumulation buffers/deep buffers)
	8.7.1 Configuring the Frame Buffers
	8.7.2 Loading the Pixel Unit and Pixel Address Unit Programs
	8.7.3 Blending
	8.7.4 Dithering
	8.7.5 Accumulation Buffers
	Operations:

	8.8 2D Operations (blits, pattern fills, fonts, pixel depth conversions, 2D logic ops.)
	8.8.1 Simple Solid Color Operations
	8.8.2 Color Pattern Operations
	8.8.3 Monochrome Pattern Fills
	8.8.4 Screen To Screen Copies (BitBlt)
	8.8.5 Text Font Rendering
	8.8.6 Bitmap Depth Conversion

	8.9 Video Operations and the DXVA Driver
	8.9.1 Video scaling (replication and pixel dropping)
	8.9.2 Using the Isochronous channel for video overlays
	8.9.3 Probe & Locking
	8.9.4 Main Function Loop
	8.9.5 Implementation
	8.9.5.1 Data formats, Data flow & Programs: Surface formats & General Data flow
	8.9.5.2 Alpha Blending
	8.9.5.3 Sub-Pixel Sampling & Interlacing
	TexCoord Program
	Shader program

	8.9.5.4 Clipping Macroblocks
	8.9.5.5 Frame structured Pictures
	“I” Frames
	“P” Frame structured blocks
	“B” Frame structured blocks
	“P” Field structured blocks
	“B” Field structured blocks
	Dual Prime blocks
	“I” Frames
	“P” Field structured blocks
	“B” Field structured blocks
	“P” 16x8 MC structured blocks
	“B” 16x8 MC structured blocks
	Dual Prime blocks

	8.9.6 Summary

	9 Antialiasing
	9.1 Sample point position (how many sample points)
	9.2 OpenGL Antialiasing (triangles, dual line patterns, points)
	9.3 Full Scene AA (FSAA, Multi sampling, Super sampling)

	10 Exotica
	10.1 Beyond ordinary graphics functions (imagination, examples)
	10.2 Vertex Shader applications
	10.2.1 Tessellation
	10.2.2 Displacement Mapping
	10.2.2.1 Sampling the Displacement Map
	10.2.2.2 Calculating the Normal

	10.3 Texture Co-ordinate applications
	10.3.1 Convolution
	10.3.2 High Order or Multi-tap Filters
	10.3.3 Ray Casting
	10.3.4 Bump Mapping
	BumpMap

	10.4 Pixel applications

	11 Glossary & Index

